OFFSET
1,2
COMMENTS
Primes of the form k^2 + 17 have a representation as a sum of 2 squares because they belong to A002144.
All terms are multiple of 6.
LINKS
Daniel Starodubtsev, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Near-Square Prime
EXAMPLE
a(3) = 24 because 24^2 + 17 = 593, which is prime.
MATHEMATICA
Select[Range[0, 1200], PrimeQ[#^2 + 17] &] (* Michael De Vlieger, Nov 25 2015 *)
PROG
(PARI) for(n=0, 1e3, if(isprime(n^2+17), print1(n, ", "))) \\ Altug Alkan, Nov 25 2015
(Magma) [n: n in [0..1200 ] | IsPrime(n^2+17)]; // Vincenzo Librandi, Nov 25 2015
CROSSREFS
Cf. A228244 (associated primes).
Other sequences of the type "Numbers n such that n^2 + k is prime": A005574 (k=1), A067201 (k=2), A049422 (k=3), A007591 (k=4), A078402 (k=5), A114269 (k=6), A114270 (k=7), A114271 (k=8), A114272 (k=9), A114273 (k=10), A114274 (k=11), A114275 (k=12), A113536 (k=13), A121250 (k=14), A121982 (k=15), A122062 (k=16).
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 25 2015
EXTENSIONS
Edited by Bruno Berselli, Nov 26 2015
STATUS
approved