Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #64 Feb 08 2021 06:38:47
%S 1,1,4,34,364,4269,52844,679172,8976188,121223668,1665558544,
%T 23207619274,327167316436,4657884819670,66875794530120,
%U 967202289590280,14077773784645980,206058395118133932,3031188276557963312,44789055557553810152
%N Degeneracies of entanglement witness eigenstates for spin 3/2 particles.
%H Gheorghe Coserea, <a href="/A264607/b264607.txt">Table of n, a(n) for n = 0..200</a>
%H Hacène Belbachir, Oussama Igueroufa, <a href="https://hal.archives-ouvertes.fr/hal-02918958/document#page=48">Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers</a>, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
%H Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, <a href="http://arxiv.org/abs/1511.06623">From Entanglement Witness to Generalized Catalan Numbers</a>, arXiv:1511.06623 [quant-ph], 2015.
%H T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, <a href="https://hal.archives-ouvertes.fr/hal-01345527">Spin Multiplicities</a>, hal-01345527, 2016.
%F a(n) ~ (2*sqrt(10)/25)*4^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-21/(40*n)+O(1/n^2)). - _Thomas Curtright_, Jun 17 2016, updated Jul 16 2016
%F D-finite with recurrence: 3*n*(3*n - 1)*(3*n + 1)*(5*n - 7)*a(n) = 8*(2*n - 1)*(145*n^3 - 338*n^2 + 238*n - 51)*a(n-1) - 128*(n-1)*(2*n - 3)*(2*n - 1)*(5*n - 2)*a(n-2). - _Vaclav Kotesovec_, Jun 24 2016
%F a(n) = (1/Pi)*int((sin(4x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - _Thomas Curtright_, Jun 24 2016
%F a(n) = Catalan(3*n)*2F1(-1-3*n,-2*n;1/2-3*n;1/2). - _Benedict W. J. Irwin_, Sep 27 2016
%t a[n_]:= 2/Pi*4^(2*n)*Integrate[Sqrt[1-t]*(2*t-1)^(2*n)*Sqrt[t]^(2*n-1),{t,0,1}] (* _Thomas Curtright_, Jun 22 2016 *)
%t a[n_]:= c[0, 2 n, 3/2]-c[1, 2 n, 3/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* _Thomas Curtright_, Jul 26 2016 *)
%t Table[CatalanNumber[3 n]Hypergeometric2F1[-1-3n,-2n,1/2-3n,1/2],{n,0,20}] (* _Benedict W. J. Irwin_, Sep 27 2016 *)
%o (PARI)
%o N = 44; S = 3/2;
%o M = matrix(N+1, N*numerator(S)+1);
%o Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
%o Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
%o Minit() = {
%o my(step = 1/denominator(S));
%o Mset(0, 0, 1);
%o for (n = 1, N, forstep (j = 0, n*S, step,
%o my(acc = 0);
%o for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
%o Mset(n, j, acc)));
%o };
%o Minit();
%o vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ _Gheorghe Coserea_, Apr 28 2016
%Y For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, this sequence, A007043, A272391, A264608, A272392, A272393, A272394, A272395.
%K nonn
%O 0,3
%A _N. J. A. Sloane_, Nov 24 2015
%E More terms from _Gheorghe Coserea_, Apr 28 2016