Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 12 2015 07:01:27
%S 1,3,1,9,6,1,18,36,13,1,36,120,169,28,1,78,400,936,784,60,1,169,1440,
%T 5184,7168,3600,129,1,364,5184,33408,65536,54720,16641,277,1,784,
%U 18432,215296,730368,831744,418992,76729,595,1,1680,65536,1323792,8139609
%N T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having directed index change 0,0 0,2 1,0 or -1,-2.
%C Table starts
%C .1....3.......9.........18...........36.............78.............169
%C .1....6......36........120..........400...........1440............5184
%C .1...13.....169........936.........5184..........33408..........215296
%C .1...28.....784.......7168........65536.........730368.........8139609
%C .1...60....3600......54720.......831744.......16066704.......310358689
%C .1..129...16641.....418992.....10549504......353333680.....11834176225
%C .1..277...76729....3204336....133818624.....7767356736....450847788304
%C .1..595..354025...24514000...1697440000...170773835200..17180991840016
%C .1.1278.1633284..187528608..21531453696..3754476071280.654674355426025
%C .1.2745.7535025.1434558960.273119121664.82543032602992
%H R. H. Hardin, <a href="/A264364/b264364.txt">Table of n, a(n) for n = 1..127</a>
%F Empirical for column k:
%F k=1: a(n) = a(n-1)
%F k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3)
%F k=3: a(n) = 3*a(n-1) +7*a(n-2) +3*a(n-3) -5*a(n-4) +3*a(n-5) -a(n-6)
%F k=4: a(n) = 3*a(n-1) +28*a(n-2) +57*a(n-3) +10*a(n-4) -24*a(n-5) +8*a(n-6)
%F k=5: a(n) = 11*a(n-1) +22*a(n-2) -8*a(n-3)
%F k=6: [order 30]
%F Empirical for row n:
%F n=1: a(n) = a(n-1) +3*a(n-3) +3*a(n-4) +3*a(n-5) +3*a(n-6) -2*a(n-8) -a(n-9)
%F n=2: a(n) = 3*a(n-1) +6*a(n-3) +4*a(n-4)
%e Some solutions for n=4 k=4
%e ..0..1..2..3..4....7..8..0..3..2....0..8..2..1..4....0..1..2..3..4
%e .12..6..7..8..9...12..1..5..6..4...12.13.14..3..7...12..6.14..8..7
%e ..5.18.19.11.14...17.18.10.13..9....5..6.19.11..9....5.11.10.13..9
%e .10.16.24.13.17...22.11.24.16.14...10.16.24.18.17...15.23.24.16.19
%e .15.21.20.23.22...15.21.20.23.19...15.21.20.23.22...20.21.17.18.22
%Y Column 2 is A002478(n+1).
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Nov 12 2015