The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264201 Numerator of sum of numbers in set g(n) generated as in Comments 1
 0, 1, 7, 46, 265, 1519, 8560, 47578, 264076, 1461439, 8075011, 44596708, 246189961, 1358762089, 7498499272, 41378660380, 228330571360, 1259923712821, 6952163820391, 38361311420962, 211673092313329, 1167984733037851, 6444783128779528, 35561432547881926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Starting with g(0) = {0}, generate g(n) for n > 0 inductively using these rules: (1)  if x is in g(n-1), then x + 1 is in g(n); and (2)  if x is in g(n-1) and x < 3, then x/3 is in g(n). The sum of numbers in g(n) is a(n)/3^(n-1). LINKS FORMULA Conjecture: a(n) = 4*a(n-1) + 9*a(n-2) + 18*a(n-3) - 81*a(n-4) - 162*a(n-5) - 243*a(n-6). EXAMPLE g(0) = {0}, sum = 0. g(1) = {1}, sum = 1. g(2) = {1/3,2/1}, sum = 7/3. g(3) = {1/9,2/3,4/3,3/1}, sum = 46/9. MATHEMATICA z = 5; x = 1/3;  g[0] = {0}; g[1] = {1}; g[n_] := g[n] = Union[1 + g[n - 1], (1/3) Select[g[n - 1], # < 3 &]] Table[g[n], {n, 0, z}] Table[Total[g[n]], {n, 0, z}] u = Numerator[Table[Total[g[n]], {n, 0, z}] ] CROSSREFS Cf. A264200. Sequence in context: A100024 A171010 A258630 * A086092 A081894 A128597 Adjacent sequences:  A264198 A264199 A264200 * A264202 A264203 A264204 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 07:19 EDT 2022. Contains 356019 sequences. (Running on oeis4.)