login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest prime factor of the n-th Pell number, A000129(n).
5

%I #27 May 26 2022 07:08:22

%S 2,5,3,29,7,13,17,197,41,5741,11,33461,239,269,577,8297,199,179057,59,

%T 45697,5741,982789,1153,29201,33461,146449,337,44560482149,269,

%U 3272609,665857,52734529,15607,1800193921,199,1101341,9369319,4605197,5521,1746860020068409

%N Largest prime factor of the n-th Pell number, A000129(n).

%C First differs from A246556 at n = 17. Since Pell(17) = 1136689 = 137 * 8297, we find that 137 does not divide any earlier Pell number, and hence A246556(17) = 137, but 8297 is also prime, and so a(17) = 8297.

%H Daniel Suteu and Jon E. Schoenfield, <a href="/A264137/b264137.txt">Table of n, a(n) for n = 2..630</a> (terms a(2)..a(240) from Jon E. Schoenfield)

%F a(n) = A006530(A000129(n)).

%t Table[FactorInteger[Fibonacci[n, 2]][[-1, 1]], {n, 25}] (* _Alonso del Arte_, Dec 10 2016 *)

%t FactorInteger[#][[-1,1]]&/@LinearRecurrence[{2,1},{2,5},60] (* _Harvey P. Dale_, Jun 08 2019 *)

%o (PARI) a(n) = vecmax(factor(([2, 1; 1, 0]^n)[2, 1])[,1]); \\ _Daniel Suteu_, May 26 2022

%Y Cf. A000129, A006530, A060385, A246556.

%K nonn

%O 2,1

%A _Jon E. Schoenfield_, Dec 29 2015