login
A264011
Exponents n such that 2^(2*n+1) - 3*2^n - 1 (A195461) is prime
0
2, 3, 4, 5, 8, 16, 27, 28, 33, 36, 48, 66, 90, 112, 508, 1036, 1041, 1560, 2208, 2668, 4388, 6097, 6517, 11353, 17284, 22385, 24740, 29805, 77188, 135219, 199237
OFFSET
1,1
COMMENTS
Obtained using a Lucas-Lehmer-type test due to Williams.
Next term > 200000.
LINKS
H. C. Williams, A class of primality tests for trinomials which includes the Lucas-Lehmer test, Pacific J. Math. Volume 98, Number 2 (1982), 477-494.
PROG
(PARI) for(n=1, 10^9, if(ispseudoprime(2^(2*n+1) - 3*2^n - 1), print1(n, ", "))); \\ Joerg Arndt, Apr 08 2016
CROSSREFS
Cf. A195461.
Sequence in context: A333264 A247461 A281303 * A337280 A081711 A055638
KEYWORD
nonn,more
AUTHOR
Fabrice Lavier, Jan 03 2016
STATUS
approved