login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264003
T(n,k)=Number of (n+1)X(k+1) arrays of permutations of 0..(n+1)*(k+1)-1 with each element having index change (+-,+-) 0,0 1,2 or 1,0.
9
4, 18, 9, 81, 99, 25, 288, 1089, 925, 64, 1024, 8679, 34225, 7304, 169, 3872, 69169, 791245, 833569, 62101, 441, 14641, 568343, 18292729, 50616720, 22819729, 516117, 1156, 54450, 4669921, 457981160, 3073593600, 3817152613, 604028929, 4331090
OFFSET
1,1
COMMENTS
Table starts
....4.......18..........81..........288.........1024.........3872
....9.......99........1089.........8679........69169.......568343
...25......925.......34225.......791245.....18292729....457981160
...64.....7304......833569.....50616720...3073593600.209279846160
..169....62101....22819729...3817152613.638511266761
..441...516117...604028929.271516496545
.1156..4331090.16226938225
.3025.36234055
.7921
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3)
k=2: a(n) = 5*a(n-1) +37*a(n-2) -44*a(n-3) -256*a(n-4) +64*a(n-5) +256*a(n-6)
k=3: a(n) = 29*a(n-1) +36*a(n-2) -2832*a(n-3) +6656*a(n-4) +24576*a(n-5) -65536*a(n-6)
k=4: [order 30]
Empirical for row n:
n=1: a(n) = 4*a(n-1) -4*a(n-2) +12*a(n-3) -12*a(n-5) +4*a(n-6) -4*a(n-7) +a(n-8)
n=2: [order 16]
EXAMPLE
Some solutions for n=3 k=4
..0..8..2..3..9....0..6..7..8..4....0..1..2..3..7....0..1..2..6..7
..5..1..4.13.12....5..3..2..1.12....5.13..4.11.14....5.13..4..3.12
.10.18..7..6.14...10.16.19.18..9...10..6.12..8..9...17.16..9..8.14
.15.16.17.11.19...15.13.17.11.14...15.16.17.18.19...15.11.10.18.19
CROSSREFS
Column 1 is A007598(n+2).
Sequence in context: A341800 A236563 A264207 * A077109 A070923 A064220
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 31 2015
STATUS
approved