login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Riordan array (f(x)^4, f(x)), where 1 + x*f^4(x)/(1 - x*f(x)) = f(x).
1

%I #12 Dec 03 2017 17:07:05

%S 1,4,1,26,5,1,192,35,6,1,1531,270,45,7,1,12848,2215,362,56,8,1,111818,

%T 18961,3054,461,68,9,1,1000068,167455,26670,4067,592,81,10,1,9135745,

%U 1514590,239081,36232,5274,732,95,11,1

%N Riordan array (f(x)^4, f(x)), where 1 + x*f^4(x)/(1 - x*f(x)) = f(x).

%C Riordan arrays of the form (f(x)^(m+1), f(x)), where f(x) satisfies 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) include (modulo differences of offset) the Motzkin triangle A091836 (m = -1), the Catalan triangle A033184 (m = 0) and the Schroder triangle A091370 (m = 1). This is the case m = 3. See A263917 for the case m = 2.

%C The coefficients of the power series solution of the equation 1 + x*f^(m+1)(x)/(1 - x*f(x)) = f(x) appear to be given by [x^0] f(x) = 1 and [x^n] f(x) = 1/n * Sum_{k = 1..n} binomial(n,k)*binomial(n + m*k, k - 1) for n >= 1.

%C This triangle appears in Novelli et al., Figure 8, p. 24, where a combinatorial interpretation is given in terms of trees.

%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arXiv.org/abs/math.CO/0512570">Noncommutative Symmetric Functions and Lagrange Inversion</a>, arXiv:math/0512570 [math.CO], 2005-2006.

%F O.g.f. f^4(x)/(1 - x*t*f(x)) = 1 + (4 + t)*x + (26 + 5*t + t^2)*x^2 + ..., where f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + ... satisfies 1 + x*f^4(x)/(1 - x*f(x)) = f(x);

%F f(x) - 1 is the g.f. for the row sums of the array.

%F f(x)^4 is the g.f. for the first column of the array.

%e Triangle begins

%e 1,

%e 4, 1,

%e 26, 5, 1,

%e 192, 35, 6, 1,

%e 1531, 270, 45, 7, 1,

%e 12848, 2215, 362, 56, 8, 1,

%e 111818, 18961, 3054, 461, 68, 9, 1,

%e ...

%e f(x) = 1 + x + 5*x^2 + 32*x^3 + 234*x^4 + 1854*x^5 + 15490*x^6 + 134380*x^7 + 1198944*x^8 + 10931761*x^9 + 101412677*x^10 + 954155059*x^11 + 9083120975*x^12 + ...

%e f(x)^4 = 1 + 4*x + 26*x^2 + 192*x^3 + 1531*x^4 + 12848*x^5 + 111818*x^6 + 1000068*x^7 + 9135745*x^8 + 84880196*x^9 + 799602464*x^10 + 7619763776*x^11 + 73322247876*x^12 + ...

%p TreesByArityOfTheRoot_Row := proc(m, row) local c,f,s;

%p c := N -> hypergeom([1-N, seq((N+j)/m, j=m+1..2*m)],

%p [2, seq((N+j)/(m-1), j=m+1..2*m-1)], -m^m/(m-1)^(m-1)):

%p f := n -> 1 + add(simplify(c(i))*x^i,i=1..n):

%p s := j -> coeff(series(f(j)^(m+1)/(1-x*t*f(j)),x,j+1),x,j):

%p seq(coeff(s(row),t,j),j=0..row) end:

%p A263918_row := n -> TreesByArityOfTheRoot_Row(3, n):

%p seq(A263918_row(n), n=0..8); # _Peter Luschny_, Oct 31 2015

%t nmax = 9; For[f = 1; n = 1, n <= nmax, n++, f = 1 + x*f^4/(1 - x*f) + O[x]^n // Normal];

%t g = f^4/(1 - x*t*f) + O[x]^nmax // Normal;

%t row[n_] := CoefficientList[Coefficient[g, x, n], t];

%t Table[row[n], {n, 0, nmax}] // Flatten (* _Jean-François Alcover_, Dec 03 2017 *)

%Y Cf. A033184, A091370, A091836, A263917.

%K nonn,tabl,easy

%O 0,2

%A _Peter Bala_, Oct 29 2015