Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 03 2019 09:02:21
%S 33,2399,252097,29452071,3532758473,426525918799,51580839266577,
%T 6240392439847991,755059969459250713,91361403922865509599,
%U 11054703458723757804257,1337618299713909786621511
%N Number of (2n+1) X (3+2) 0..1 arrays with each row and column modulo 3 equal to 1, read as a binary number with top and left being the most significant bits.
%H R. H. Hardin, <a href="/A263908/b263908.txt">Table of n, a(n) for n = 1..105</a>
%F Empirical: a(n) = 169*a(n-1) - 6387*a(n-2) + 71671*a(n-3) - 195052*a(n-4).
%F Conjectures from _Colin Barker_, Jan 03 2019: (Start)
%F G.f.: x*(33 - 3178*x + 57437*x^2 - 195052*x^3) / ((1 - 4*x)*(1 - 13*x)*(1 - 31*x)*(1 - 121*x)).
%F a(n) = (5*2^(1+2*n) + 11^(1+2*n) + 31*13^n + 29*31^n) / 81.
%F (End)
%e Some solutions for n=3:
%e ..0..0..1..1..1....0..0..1..1..1....0..1..1..0..1....0..1..0..1..0
%e ..0..0..1..1..1....0..0..0..0..1....0..0..1..1..1....1..0..1..1..0
%e ..1..1..1..1..1....1..1..0..0..1....1..1..1..0..0....1..1..1..1..1
%e ..1..1..1..1..1....0..1..0..1..0....0..1..0..1..0....0..1..1..0..1
%e ..1..1..1..0..0....1..0..0..1..1....1..1..0..0..1....0..0..0..0..1
%e ..1..1..1..0..0....1..0..0..1..1....1..1..1..1..1....0..0..1..1..1
%e ..1..1..1..1..1....0..1..0..1..0....0..0..1..1..1....1..0..0..1..1
%Y Column 3 of A263913 (nonzero terms).
%K nonn
%O 1,1
%A _R. H. Hardin_, Oct 29 2015