Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #39 Jul 07 2023 16:03:16
%S 6,5,4,2,3,1,1,3,2,2,2,2,3,1,1,2,1,1,1,1,1,3,2,6,2,1,1,1,1,2,1,2,1,2,
%T 1,1,2,1,1,2,5,1,2,1,1,2,2,1,1,2,2,2,1,2,1,1,1,2,1,2,1,2,2,1,1,1,3,2,
%U 1,1,1,4,2,1,2,1,1,1,1,1,2,1,2,1,3,2,1,1,1,1,1,1,1,2,3,1,4,1,1,1
%N Length k of the longest chain of primes p_1, p_2, ..., p_k such that p_1 is the n-th prime and p_{i+1} equals 2*p_i + 1 or 2*p_i - 1 for all i < k, the +/- sign depending on i.
%C If the +/- signs are all + or all -, then p_1, p_2, ..., p_k is a Cunningham chain of the first or second kind, respectively.
%C If p_1 > 3, then the +/- signs must be all + or all -, because if e = +1 or -1, then one of p, 2*p + e, 2*(2*p + e) - e is divisible by 3; see Löh (1989), p. 751.
%C Cunningham chains of the first and second kinds of length > 1 cannot begin with the same prime p > 3, because one of the numbers p, 2*p-1, 2*p+1 is divisible by 3.
%D R. K. Guy, Unsolved Problems in Number Theory, A7.
%H Robert Israel, <a href="/A263879/b263879.txt">Table of n, a(n) for n = 1..10000</a>
%H G. Löh, <a href="http://www.jstor.org/stable/2008735">Long chains of nearly doubled primes</a>, Math. Comp., 53 (1989), 751-759.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Cunningham_chain">Cunningham chain</a>
%F a(n) = max(A181697(n), A181715(n)) for n > 2.
%F a(n) < prime(n) for n > 2; see Löh (1989), p. 751.
%e 2, 3, 5, 11, 23, 47 is the longest such chain of primes starting with 2. Their indices are 1, 2, 3, 5, 9, 15, respectively, so a(1) = 6, a(2) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1.
%p f:= proc(n) option remember; local x;
%p if n mod 3 = 1 then x:= 2*n-1 else x:= 2*n+1 fi;
%p if isprime(x) then 1 + procname(x) else 1 fi;
%p end proc:
%p f(2):= 6: f(3):= 5:
%p map(f, [seq(ithprime(i),i=1..100)]); # _Robert Israel_, Jul 04 2023
%t A263879 = Join[{6, 5},
%t Table[p = Prime[n]; cnt = 1;
%t While[PrimeQ[2*p + 1] || PrimeQ[2*p - 1],
%t cnt++ && If[PrimeQ[2*p + 1], p = 2*p + 1, p = 2*p - 1 ]];
%t cnt, {n, 3, 100}]]
%o (Python)
%o from sympy import prime, isprime
%o def A263879(n):
%o if n <= 2: return 7-n
%o p, c = prime(n), 1
%o while isprime(p:=(p<<1)+(-1 if p%3==1 else 1)):
%o c += 1
%o return c # _Chai Wah Wu_, Jul 07 2023
%Y Cf. A005384, A005602, A181697, A181715.
%K nonn
%O 1,1
%A _Jonathan Sondow_, Oct 28 2015