login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = least positive k such that A263874(n) + 2^k is prime.
3

%I #12 Nov 22 2015 15:23:24

%S 1,2,3,4,5,8,10,20,29,955,4583176,9092392

%N a(n) = least positive k such that A263874(n) + 2^k is prime.

%C A263874 gives where the records occur.

%H mersenneforum.org, <a href="http://www.mersenneforum.org/forumdisplay.php?f=86">Five or Bust - The Dual Sierpinski Problem</a>

%o (PARI) a=1; forstep(n=1, 773, 2, k=1; while(!ispseudoprime(n+2^k), k++); if(k+1>a, print1(k, ", "); a=k+1));

%Y Cf. A067760, A263874.

%K nonn,hard,more

%O 1,2

%A _Arkadiusz Wesolowski_, Oct 28 2015