This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A263856 Let S_n be the list of the first n primes written in binary, with least significant bits on the left, and sorted into lexicographic order; a(n) = position of n-th prime in S_n. 4

%I

%S 1,2,2,4,4,3,2,6,9,5,11,4,3,11,14,6,13,9,11,17,3,20,14,5,2,9,23,20,12,

%T 4,31,17,5,23,12,32,17,22,32,15,26,14,42,2,11,37,29,46,27,14,9,48,6,

%U 40,2,43,22,51,18,12,43,17,39,56,14,32,45,6,50

%N Let S_n be the list of the first n primes written in binary, with least significant bits on the left, and sorted into lexicographic order; a(n) = position of n-th prime in S_n.

%C a(A264647(n)) = n and a(m) != n for m < A264647(n). - _Reinhard Zumkeller_, Nov 19 2015

%C A264662(n,a(n)) = A000040(n): a(n) = index of prime(n) in n-th row of triangle A264662. - _Reinhard Zumkeller_, Nov 20 2015

%H John Bodeen, <a href="/A263856/b263856.txt">Table of n, a(n) for n = 1..24771</a>

%H <a href="https://github.com/jbodeen/ava/blob/master/camlib/primes.ml"> OCaml program to generate the sequence </a>

%e S_1 = [01], a(1) = 1;

%e S_2 = [01, 11], a(2) = 2;

%e S_3 = [01, 101, 11], a(3) = 2;

%e S_4 = [01, 101, 11, 111], a(4) = 4;

%e S_5 = [01, 101, 11, 1101, 111], a(5) = 4;

%e S_5 = [01, 101, 1011, 11, 1101, 111], a(6) = 3;

%e ...

%p s:= proc(n) s(n):= cat("", convert(ithprime(n), base, 2)[]) end:

%p a:= n-> ListTools[BinarySearch](sort([seq(s(i), i=1..n)]), s(n)):

%p seq(a(n), n=1..100); # _Alois P. Heinz_, Nov 19 2015

%o import Data.List (insertBy); import Data.Function (on)

%o import Data.List (elemIndex); import Data.Maybe (fromJust)

%o a263856 n = a263856_list !! (n-1)

%o a263856_list = f [] a004676_list where

%o f bps (x:xs) = y : f bps' xs where

%o y = fromJust (elemIndex x bps') + 1

%o bps' = insertBy (compare `on` (reverse . show)) x bps

%o -- _Reinhard Zumkeller_, Nov 19 2015

%o (Python)

%o from sympy import prime

%o def A263856(n):

%o return 1+sorted(format(prime(i),'b')[::-1] for i in range(1,n+1)).index(format(prime(n),'b')[::-1]) # _Chai Wah Wu_, Nov 22 2015

%Y A004676 is the sequence upon which the lexicographic ordering is based.

%Y Cf. A264596.

%Y Cf. A264647, A264662.

%K nonn,base

%O 1,2

%A _John Bodeen_, Oct 28 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 22 04:29 EDT 2018. Contains 316431 sequences. (Running on oeis4.)