Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 26 2023 10:26:48
%S 0,1,4,23,156,1162,9192,75819,644908,5616182,49826712,448771622,
%T 4092553752,37714212564,350658882768,3285490743987,30989950019532,
%U 294031964658430,2804331954047160,26870823304476690,258548658860327880,2497104592420003980,24199830095943069360,235254163727798051070
%N Reversion of g.f. for A162395 (squares with signs).
%C This is a variant of A007297, which is the main entry, with many references to both versions.
%C From _Peter Bala_, Apr 07 2020: (Start)
%C Let A(x) = 1 + 4*x + 23*x^2 + ... denote the o.g.f. of this sequence taken with an offset of 0. The sequence defined by b(n) := [x^n] A(x)^n for n >= 0 begins [1, 4, 62, 1084, 19982, 379504, 7347410, 144168392, 2856907662, 57044977168, 1145905776312, 23131265652092, ...]. We conjecture that the supercongruences b(n*p^k) == b(n*p^(k-1)) ( mod p^(3*k) ) hold for prime p >= 3 and all positive integers n and k.
%C More generally, for a positive integer r and integer s, the sequence {b(r,s;n) : n >= 0} defined by b(r,s;n) := [x^(r*n)] A(x)^(s*n) is conjectured to satisfy the same supercongruences. (End)
%F a(n) ~ sqrt(7 - 4*sqrt(3)) * 2^(n-1/2) * 3^(3*n/2) / (sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Nov 11 2017
%F D-finite with recurrence n*(n+1)*a(n) -18*n*(n-2)*a(n-1) +12*(-9*n^2+18*n-14)*a(n-2) +216*(3*n-7)*(3*n-8)*a(n-3)=0. - _R. J. Mathar_, Mar 24 2023
%F From _Ilya Gutkovskiy_, Sep 26 2023: (Start)
%F G.f. A(x) satisfies: A(x) = x * (1 + A(x))^3 / (1 - A(x)).
%F a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(3*n,n-k-1) for n > 0. (End)
%p with(gfun); t1:=(x-x^2)/(1+x)^3; t2:=series(t1,x,50); t3:=seriestoseries(t2, 'revogf'); seriestolist(%);
%t CoefficientList[InverseSeries[Series[x*(1-x)/(1+x)^3, {x, 0, 30}], x], x] (* _Vaclav Kotesovec_, Nov 11 2017 *)
%Y Cf. A162395.
%Y A variant of A007297.
%K nonn,easy
%O 0,3
%A _N. J. A. Sloane_, Nov 05 2015