login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A263805
Binary representation of the n-th iteration of the "Rule 157" elementary cellular automaton starting with a single ON (black) cell.
2
1, 11, 111, 101111, 1011111, 1010111111, 10101111111, 10101011111111, 101010111111111, 101010101111111111, 1010101011111111111, 1010101010111111111111, 10101010101111111111111, 10101010101011111111111111, 101010101010111111111111111
OFFSET
0,2
FORMULA
Conjectures from Colin Barker, Jan 20 2016 and Apr 17 2019: (Start)
a(n) = 11*a(n-1)+9990*a(n-2)-110000*a(n-3)+100000*a(n-4) for n>4.
G.f.: (1-10000*x^2+100000*x^3-100000*x^4) / ((1-x)*(1-10*x)*(1-100*x)*(1+100*x)).
(End)
Conjecture: a(n) = (10*10^n*(10^n + 1)/11 - 1)/9 for odd n; a(n) = (10^n*(10^n + 10)/11 - 1)/9 for even n > 0. - Karl V. Keller, Jr., May 05 2022
MATHEMATICA
rule=157; rows=20; ca=CellularAutomaton[rule, {{1}, 0}, rows-1, {All, All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]], {rows-k+1, rows+k-1}], {k, 1, rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]]], {k, 1, rows}] (* Binary Representation of Rows *)
CROSSREFS
Sequence in context: A108047 A144784 A030175 * A058949 A378022 A119742
KEYWORD
nonn,easy
AUTHOR
Robert Price, Jan 17 2016
STATUS
approved