Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 09 2017 02:58:22
%S 1,0,3,-12,93,-852,9543,-125592,1901433,-32557992,622171083,
%T -13127139492,303107003733,-7602746576892,205855300099983,
%U -5984428053529392,185914355908981233,-6146745514853869392,215496349961845902483,-7985298182676045656892
%N Partial sums of odd double factorials (A001147) with alternating signs.
%H G. C. Greubel, <a href="/A263801/b263801.txt">Table of n, a(n) for n = 0..400</a>
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/DoubleFactorial.html">Double Factorial</a>.
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/IncompleteGammaFunction.html">Incomplete Gamma Function</a>.
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/Erf.html">Erf</a>.
%F a(n) = Sum_{k=0..n} (-1)^k*(2*k-1)!!.
%F a(n) = (sqrt(Pi)*erfc(1/sqrt(2))-Gamma(-n-1/2, 1/2)*(2*n+1)!!/(-2)^(n+1))*exp(1/2)/sqrt(2), where Gamma(a, x) is the upper incomplete Gamma function.
%F E.g.f.: 1/sqrt(2*x+1)+sqrt(Pi/2)*exp(x+1/2)*(erf(sqrt(x+1/2))-erf(1/sqrt(2))).
%F Recurrence: a(0) = 1, a(1) = 0, a(n+2) = (2*n+3)*a(n)-(2*n+2)*a(n+1).
%F 0 = a(n)*(-2*a(n+1) + a(n+2) + a(n+3)) + a(n+1)*(+3*a(n+1) - 3*a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) if n>=0. - _Michael Somos_, Oct 30 2015
%e For n = 4, a(4) = Sum_{k=0..4} (-1)^k*(2*k-1)!! = (-1)!! - 1!! + 3!! - 5!! + 7!! = 1 - 1 + 3 - 15 + 105 = 93.
%e G.f. = 1 + 3*x^2 - 12*x^3 + 93*x^4 - 852*x^5 + 9543*x^6 - 125592*x^7 + ...
%t Table[Sum[(-1)^k (2k-1)!!, {k, 0, n}], {n, 0, 20}]
%t Round@Table[(Sqrt[Pi] Erfc[1/Sqrt[2]] - Gamma[-n-1/2, 1/2] (2n+1)!!/(-2)^(n+1)) Sqrt[E/2], {n, 0, 20}]
%o (PARI) for(n=0,50, print1(sum(k=0,n, (-1)^k*(2*k)!/(2^k*k!)), ", ")) \\ _G. C. Greubel_, Apr 08 2017
%Y Cf. A001147, A076795.
%K sign
%O 0,3
%A _Vladimir Reshetnikov_, Oct 26 2015