login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of inversion sequences avoiding pattern 120.
33

%I #28 Jul 15 2024 10:38:21

%S 1,1,2,6,23,103,515,2803,16334,100700,650905,4380595,30528410,

%T 219352058,1619260140,12245357074,94636062782,745907086918,

%U 5985448211508,48824435255942,404330087326924,3395418226577756,28884708430087203,248696210256230427

%N Number of inversion sequences avoiding pattern 120.

%C Number of length n inversion sequences avoiding e_k < e_i < e_j for i<j<k. A length n inversion sequence e_1,e_2,...,e_n consists of nonnegative integers e_t <= t-1. - _Alois P. Heinz_, Dec 20 2016

%H Jay Pantone, <a href="/A263778/b263778.txt">Table of n, a(n) for n = 0..200</a>

%H Sylvie Corteel, Megan A. Martinez, Carla D. Savage, and Michael Weselcouch, <a href="http://arxiv.org/abs/1510.05434">Patterns in Inversion Sequences I</a>, arXiv:1510.05434 [math.CO], 2015.

%H Toufik Mansour and Mark Shattuck, <a href="https://doi.org/10.1515/puma-2015-0016">Pattern Avoidance in Inversion Sequences</a>, Pure Math. Appl. (PU.M.A.) 25 (2015), no. 2, 157-176.

%H Megan A. Martinez and Carla D. Savage, <a href="https://arxiv.org/abs/1609.08106">Patterns in Inversion Sequences II: Inversion Sequences Avoiding Triples of Relations</a>, arXiv:1609.08106 [math.CO], 2016.

%H Jay Pantone, <a href="https://arxiv.org/abs/2310.19632">The enumeration of inversion sequences avoiding the patterns 201 and 210</a>, arXiv:2310.19632 [math.CO], 2023.

%H Benjamin Testart, <a href="https://arxiv.org/abs/2407.07701">Completing the enumeration of inversion sequences avoiding one or two patterns of length 3</a>, arXiv:2407.07701 [math.CO], 2024. See p. 2.

%Y Cf. A263777, A263779, A263780.

%K nonn

%O 0,3

%A _Michel Marcus_, Oct 26 2015

%E a(0)=1 prepended by _Alois P. Heinz_, Dec 15 2016

%E a(10)-a(23) from _Alois P. Heinz_, Dec 20 2016