login
Primitive Pythagorean triples (a, b, c) in lexicographic order, with a < b < c.
5

%I #74 Nov 14 2020 15:47:43

%S 3,4,5,5,12,13,7,24,25,8,15,17,9,40,41,11,60,61,12,35,37,13,84,85,15,

%T 112,113,16,63,65,17,144,145,19,180,181,20,21,29,20,99,101,21,220,221,

%U 23,264,265,24,143,145,25,312,313,27,364,365,28,45,53

%N Primitive Pythagorean triples (a, b, c) in lexicographic order, with a < b < c.

%C a(3*k+1)*a(3*k+2) / (a(3*k+1)+a(3*k+2)+a(3*k+3)) is always an integer for k >= 0. Also note that a(3*k+1)*a(3*k+2)/2 is never a perfect square. - _Altug Alkan_, Apr 08 2016

%D H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, Chapter 5, Section 5.3.

%H Colin Barker, <a href="/A263728/b263728.txt">Table of n, a(n) for n = 1..10000</a>

%H Yoshinosuke Hirakawa and Hideki Matsumura, <a href="https://doi.org/10.1016/j.jnt.2018.07.007">A unique pair of triangles</a>, Journal of Number Theory, Volume 194, January 2019, Pages 297-302. About the remarkable (135,352,377) Pythagorean triple.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Pythagorean_triple">Pythagorean triple</a>

%e The first few triples are [3, 4, 5], [5, 12, 13], [7, 24, 25], [8, 15, 17], [9, 40, 41], [11, 60, 61], [12, 35, 37], [13, 84, 85], [15, 112, 113], [16, 63, 65], [17, 144, 145], [19, 180, 181], [20, 21, 29], [20, 99, 101], ... - _N. J. A. Sloane_, Dec 15 2015

%p a:=[]; b:={}; M:=30;

%p for u from 2 to M do for v from 1 to u-1 do

%p if gcd(u,v)=1 and u+v mod 2 = 1 then t1:=u^2-v^2; t2:= 2*u*v; t3:=u^2+v^2;

%p w:=sort([t1,t2]); a:=[op(a), [op(w),t3]]; b:={ op(b), op(w), t3};

%p fi:

%p od: od:

%p a;

%p sort(a); # A263728

%p sort(b); # A016825 and A042965 (Maple code from _N. J. A. Sloane_, Dec 15 2015)

%o (PARI)

%o \\ Primitive Pythagorean triples (a,b,c) with a<b<c for given a.

%o ppt(a) = {

%o my(L=List(), b, c, d, g);

%o fordiv(a^2, d,

%o g=a^2\d;

%o if(d<=g && (d+g)%2==0,

%o c=(d+g)\2; b=g-c;

%o if(a<b && gcd(b, c)==1, listput(L, [a,b,c]))

%o )

%o );

%o vecsort(Vec(L),,2)

%o }

%o concat(concat(vector(50, n, ppt(n))))

%Y Cf. A008846, A020882, A046086, A046087, A103606, A139794, A156678, A156679.

%Y See also A016825, A042965.

%K nonn,tabf

%O 1,1

%A _Colin Barker_, Nov 20 2015