login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of length-2n central circular binary strings without zigzags (see reference for precise definition).
6

%I #23 Oct 08 2017 09:56:55

%S 0,0,4,6,12,30,70,168,412,1014,2514,6270,15702,39468,99516,251586,

%T 637500,1618638,4117102,10488684,26758762,68354250,174810354,

%U 447533586,1146836662,2941443180,7550434480,19395863358,49859516292,128252962434,330101861850

%N Number of length-2n central circular binary strings without zigzags (see reference for precise definition).

%C See page 6 in the reference.

%C A zigzag is a substring which is either 010 or 101. The central binary strings are those that contain an equal number of 0's and 1's.

%H Andrew Howroyd, <a href="/A263656/b263656.txt">Table of n, a(n) for n = 0..100</a>

%H E. Munarini and N. Z. Salvi, <a href="http://www.emis.de/journals/INTEGERS/papers/d19/d19.Abstract.html">Circular Binary Strings without Zigzags</a>, Integers: Electronic Journal of Combinatorial Number Theory 3 (2003), #A19.

%F a(n) = (1/n)*(3*(n-1)*a(n-1) - 4*(n-4)*a(n-2) + (7*n-27)*a(n-3) - 6*a(n-4) + (7*n-37)*a(n-5) - 3*(n-6)*a(n-6)) for n >= 6. - _Andrew Howroyd_, Feb 26 2017

%e For n=3 the 6 strings are 000111, 001110, 011100, 111000, 110001, 100011.

%t a[n_ /; n < 6] := {0, 0, 4, 6, 12, 30}[[n + 1]]; a[n_] := a[n] = (-(3*(n - 6)*a[n - 6]) + (7*n - 37)*a[n - 5] - 6*a[n - 4] + (7*n - 27)*a[n - 3] - 4*(n - 4)*a[n - 2] + 3*(n - 1)*a[n - 1])/n;

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Oct 08 2017, after _Andrew Howroyd_ *)

%Y Main diagonal of A263655.

%Y Cf. A007039, A263657, A263658, A263659.

%K nonn

%O 0,3

%A _Felix Fröhlich_, Oct 23 2015

%E corrected a(1) and a(17)-a(30) from _Andrew Howroyd_, Feb 26 2017