Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Nov 17 2019 02:27:18
%S 6,30,60,180,210,2310,4620,60060,510510,10810800,116396280,
%T 200560490130,401120980260
%N Intersection of A024365 and A129912.
%C The two sequences involve areas of primitive Pythagorean triples and primorial products. Intersections are only considered once (no repeats). Conjecture: the sequence is infinite.
%C Conjecture: The next two entries are a(12) = 200560490130, a(13) = 401120980260.
%C From _G. C. Greubel_, Dec 29 2015: (Start)
%C 6|a(n) for n>=1,
%C 30|a(n) for n>=2,
%C a(n)/6 = {1, 5, 10, 30, 35, 385, 770, 10010, ...} is a subset of values found in A008706.
%C (End)
%C a(12) and a(13) confirmed. a(14) > 2*10^31, if it exists. - _Giovanni Resta_, Mar 31 2017
%e A024365 begins {6, 30, 60, 84, 180, 210, 210, 330, 504, 546, 630, 840, 924, 990, 1224, 1320, 1386, 1560, 1710, 1716, 2310, ...}.
%e A129912 begins {1, 2, 6, 12, 30, 60, 180, 210, 360, 420, 1260, 2310, 2520, ...}.
%e So, common entries encountered are {6, 30, 60, 180, 210, 2310, ...}.
%e Specifically, we see that A024365(1) = A129912(3), A024365(2) = A129912(5), A024365(3) = A129912(6), A024365(5) = A129912(7).
%e These are then the first four entries of the sequence (6, 30, 60, 180).
%t s = 6 Take[Sort[(Times @@ #)/12 & /@ ({Times @@ #, (Last[#]^2 - First[#]^2)/2} & /@ Select[Subsets[Range[1, 3600, 2], {2}], GCD @@ # == 1 &])], 1800]; f[m_] := f[m] = Union[Times @@@ Subsets[FoldList[Times, 1, Prime[Range[m]]]]][[1 ;; 100]]; f[10]; f[m = 11]; While[f[m] != f[m - 1], m++]; t = f[m]; Intersection[s, t] (* _Michael De Vlieger_, Oct 22 2015, after _Harvey P. Dale_ at A020885 and _Jean-François Alcover_ at A129912 *) (* or *)
%t ok[n_] := Block[{a, f = Power @@@ FactorInteger[2 n]}, SelectFirst[ Subsets[f, {1, Floor[ Length[f]/2]}], (a = Times @@ #; IntegerQ@ Sqrt[a^2 + (2 n/a)^2]) &, {}] != {}]; pr[n_] := Product[ Prime[n+1-i]^i, {i, n}]; upto[mx_] := Block[{ric, j=1}, ric[n_, ip_, ex_] := If[n < mx, Block[{p = Prime[ip + 1]}, If[ex == 1 && ok[n], Sow@ n]; ric[n p^ex, ip + 1, ex]; If[ex > 1, ric[n p^(ex - 1), ip+1, ex-1]]]]; Sort@ Reap[ While[pr[j] < mx, ric[2^j, 1, j]; j++]][[2, 1]]]; upto[10^12] (* much faster, _Giovanni Resta_, Mar 31 2017 *)
%o (PARI)
%o \\note: code does not generate the sequence, just checks for a matching PPT entry
%o genit(area)={myMax=floor(sqrt(2*area));i5=myMax;endless=0;soln=List();
%o while(i5>=2,dun=0;j=2.*myVal/i5; k=floor(j); if(j>k, dun=1 );if(dun<1,
%o c=sqrt(i5^2 + k^2);w=floor(c);if(c>w,dun=1); if(dun<1,if(gcd(k,i5)>1,dun=1 ));
%o if(dun<1,listput(soln,k); listput(soln,i5);listput(soln,w);listsort(soln);
%o print("soln a,b,c = ", soln[1]," ",soln[2]," ",soln[3] );dun=2;break ));
%o i5--;endless++);if(i5<=2&&dun<1,print("no solution ") );if(i5>2&&dun<2,
%o print("max iteration limit was hit ",endless) );print (endless);}
%o (C++)
%o #include <iostream>
%o #include <fstream>
%o using namespace std;
%o int main(){ifstream fin1,fin2;
%o int myValue,myValue2,ptr,fptr,i5,j5;
%o unsigned long list1[9999]={0};
%o unsigned long list2[999]={0};
%o unsigned long final[31]={0};
%o fin1.open("A024365.txt"); fin2.open("A129912.txt");
%o ptr=1;
%o while(ptr<9999)
%o {fin1>> myValue;fin1.get();list1[ptr]=myValue;
%o if(ptr<999)
%o {fin2>> myValue2;fin2.get();list2[ptr]=myValue2;}
%o ptr++;}
%o fin1.close();fin2.close();fptr=1;
%o for(i5=1;i5<9990;i5++)
%o {for(j5=1;j5<999;j5++){
%o if(list1[i5]==list2[j5] )
%o {
%o fptr++;
%o if(fptr>30){break;}
%o final[fptr]=list1[i5];
%o cout << final[fptr] << ",";
%o break;
%o }}if(fptr>30){break;}}}
%Y Cf. A024365, A129912.
%K nonn,more
%O 1,1
%A _Bill McEachen_, Oct 21 2015
%E a(12)-a(13) from _Giovanni Resta_, Mar 31 2017