|
|
A263560
|
|
Primes p such that for every k >= 1, p*2^k + 1 has a divisor in the set {3, 5, 13, 17, 97, 241, 257}.
|
|
2
|
|
|
37158601, 7425967459, 9013226179, 13671059747, 14140683563, 17190420571, 17210867747, 18553286303, 18563509891, 19720992901, 20064786439, 22400387281, 23728062893, 29428753891, 36195177107, 41074421693, 44786947187, 45199948253, 48845530249
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
What is the smallest term of this sequence that belongs to A180247? Is it the smallest prime Brier number?
|
|
LINKS
|
Table of n, a(n) for n=1..19.
Chris Caldwell, The Prime Glossary, Sierpinski number
Fred Cohen and J. L. Selfridge, Not every number is the sum or difference of two prime powers, Math. Comput. 29 (1975), pp. 79-81.
Carlos Rivera, Problem 52
|
|
CROSSREFS
|
Cf. A076336, A180247, A263562.
Subsequence of A263347.
Sequence in context: A273508 A340713 A263347 * A215130 A286037 A034645
Adjacent sequences: A263557 A263558 A263559 * A263561 A263562 A263563
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Arkadiusz Wesolowski, Oct 21 2015
|
|
STATUS
|
approved
|
|
|
|