login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of positive integers < 10^n with multiplicative digital root value 6.
7

%I #23 Oct 25 2015 04:48:55

%S 1,14,155,1172,6843,43538,318457,2223803,14185700,84670477,477808607,

%T 2577052118,13759255632,75251167843,418157757456,2267313716636,

%U 11616142299625,55909713312571,257522103127082,1182251998919171,5791219719115580,32715779086392723

%N Total number of positive integers < 10^n with multiplicative digital root value 6.

%C Partial sums of A263480.

%H Hiroaki Yamanouchi, <a href="/A263474/b263474.txt">Table of n, a(n) for n = 1..50</a>

%F A263470(n) + A000027(n) + A263471(n) + A000217(n) + A263472(n) + A263473(n) + a(n) + A000217(n) + A263475(n) + A000292(n) = A002283(n).

%t lim = 6; t = Select[Range[1, 10^lim - 1], FixedPoint[Times @@ IntegerDigits@ # &, #] == 6 &]; Count[t, n_ /; n <= 10^#] & /@ Range@ lim (* _Michael De Vlieger_, Oct 21 2015 *)

%o (PARI) t(k) = {while(k>9, k=prod(i=1, #k=digits(k), k[i])); k}

%o a(n) = sum(i=1, 10^n - 1, if(t(i) == 6, 1, 0)); \\ _Altug Alkan_, Oct 19 2015

%Y Cf. A031347, A034053, A263480.

%K nonn,base

%O 1,2

%A _Martin Renner_, Oct 19 2015

%E a(9)-a(22) from _Hiroaki Yamanouchi_, Oct 25 2015