Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #48 May 02 2016 08:43:01
%S 1,1,3,1,7,12,6,52,119,137,195,231,1019,3503,6593,12616,26178,43500,
%T 64157,94688,232560,817757,2233757,5179734,11676838,24867480,50465099,
%U 99805751,190508209,357754875,668570596,1222920865,2191602460,4084023494,8885049152,22455345964,58818546941,151893212037,381199862655
%N Intervals of balanced binary trees in the Tamari lattices.
%C a(n) is the number of intervals of balanced binary trees in the Tamari lattice of binary trees with n internal nodes.
%H Joerg Arndt, <a href="/A263446/b263446.txt">Table of n, a(n) for n = 1..1000</a>
%H S. Giraudo, <a href="http://arxiv.org/abs/1107.3472">Intervals of balanced binary trees in the Tamari lattice</a>, arXiv preprint arXiv:1107.3472 [math.CO], 2011.
%H S. Giraudo, <a href="http://dx.doi.org/10.1016/j.tcs.2011.11.020">Intervals of balanced binary trees in the Tamari lattice</a>, Theoretical Computer Science, 420, 1--27, 2012.
%F G.f.: A(x) = B(x, 0, 0) where B(x, y, z) satisfies B(x, y, z) = x + B(x^2 + 2*x*y + y*z, x, x^2 + x*y).
%o (PARI) N = 66; R = O('x^(N+1)); x = 'x+R;
%o B(x, y, z, k=0) = if( k>=N, x, x + R + B(x^2 + 2*x*y + y*z + R, x + R, x^2 + x*y + R, k+1) );
%o Vec( B(x,0,0) ) \\ _Joerg Arndt_, May 01 2016
%K nonn
%O 1,3
%A _Samuele Giraudo_, Apr 27 2016
%E Terms a(26) and beyond from _Joerg Arndt_, May 01 2016