login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominator of (prime(prime(n))+2)/(prime(n)+2).
1

%I #28 Oct 21 2015 17:24:12

%S 4,5,7,9,13,15,19,7,5,31,11,13,43,45,49,55,61,21,23,73,25,81,85,91,99,

%T 103,21,109,111,115,43,7,139,3,151,51,53,55,169,175,181,61,193,65,199,

%U 201,71,225,229,11,235,241,243,253,259,265,271,13,279,283,285,59,309,313,315,29,37,113,349,27

%N Denominator of (prime(prime(n))+2)/(prime(n)+2).

%C We note that a(n) > 1 for all n = 1..10^7 except for n = 394.

%C Conjecture: For each k = 2,3,6,7,8,9 all the rational numbers (prime(p)+k)/(p+k) with p prime are pairwise distinct.

%C We have verified that all the numbers (prime(p)+2)/(p+2) with p prime and p < 10^7 are indeed pairwise distinct. Also, for each k = 3,6,7,8,9 we have verified that all the numbers (prime(p)+k)/(p+k) with p prime and p < 3*10^6 are indeed pairwise distinct.

%H Zhi-Wei Sun, <a href="/A263427/b263427.txt">Table of n, a(n) for n = 1..10000</a>

%H Zhi-Wei Sun, <a href="http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;313507b8.1510">Conjectures on the prime-counting function</a>, a message to Number Theory Mailing List, Oct. 19, 2015.

%e a(1) = 4 since (prime(prime(1))+2)/(prime(1)+2) = (prime(2)+2)/(2+2) = (3+2)/(2+2) = 5/4.

%e a(394) = 1 since (prime(prime(394))+2)/(prime(394)+2) = (prime(2707)+2)/(2707+2) = (24379+2)/(2707+2) = 24381/2709 = 9.

%t p[n_]:=p[n]=Prime[n]

%t a[n_]:=a[n]=Denominator[(p[p[n]]+2)/(p[n]+2)]

%t Table[a[n],{n,1,70}]

%o (PARI) a(n) = denominator((prime(prime(n))+2)/(prime(n)+2));

%o vector(100, n, a(n)) \\ _Altug Alkan_, Oct 18 2015

%Y Cf. A000040, A001359, A006450, A006512, A263399.

%K nonn

%O 1,1

%A _Zhi-Wei Sun_, Oct 17 2015