login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with each row and column divisible by 9, read as a base-5 number with top and left being the most significant digits.
9

%I #4 Oct 16 2015 08:14:50

%S 2,4,4,11,38,11,31,496,496,31,89,6731,34334,6731,89,253,93378,2332320,

%T 2332320,93378,253,748,1302087,161833750,787486033,161833750,1302087,

%U 748,2214,18221996,11300297029,271477636708,271477636708,11300297029

%N T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with each row and column divisible by 9, read as a base-5 number with top and left being the most significant digits.

%C Table starts

%C ....2.........4.............11...................31........................89

%C ....4........38............496.................6731.....................93378

%C ...11.......496..........34334..............2332320.................161833750

%C ...31......6731........2332320............787486033..............271477636708

%C ...89.....93378......161833750.........271477636708...........466607833464165

%C ..253...1302087....11300297029.......94234480080401........808208250265441905

%C ..748..18221996...790807552035....32785038500076147....1403458538939419648545

%C .2214.255080336.55354924698596.11408914805662871537.2437738823003642650564362

%H R. H. Hardin, <a href="/A263382/b263382.txt">Table of n, a(n) for n = 1..84</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3) +3*a(n-6) -9*a(n-7) -9*a(n-8) +27*a(n-9)

%F k=2: [order 51]

%e Some solutions for n=3 k=4

%e ..0..3..0..0..3....1..3..1..2..0....0..1..3..3..1....0..3..4..0..2

%e ..1..4..0..1..4....0..3..3..0..0....1..4..0..1..4....0..0..1..2..1

%e ..0..0..0..0..0....0..0..1..2..1....0..1..2..1..0....0..0..3..4..4

%e ..2..2..0..2..2....1..0..2..1..4....2..4..2..0..0....0..3..0..2..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Oct 16 2015