Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Apr 07 2017 11:38:57
%S 7,1,5,5,3,3,9,1,3,3,9,2,6,0,5,5,1,2,8,2,1,0,0,1,7,6,1,6,8,3,3,1,3,9,
%T 2,8,0,6,6,9,1,9,9,5,8,5,7,7,6,9,7,7,9,2,0,3,4,9,4,2,4,9,0,4,7,4,4,3,
%U 3,3,1,2,2,5,0,9,2,5,3,3,7,5,4,8,7,5
%N Decimal expansion of the lowest Dirichlet eigenvalue of the Laplacian within the unit-edged regular hexagon.
%H Robert Stephen Jones, <a href="/A263202/b263202.txt">Table of n, a(n) for n = 1..1001</a>
%H L. Bauer and E. L. Reiss, <a href="http://www.researchgate.net/publication/202846469_Cutoff_Wavenumbers_and_Modes_of_Hexagonal_Waveguides">Cutoff wavenumbers and modes of hexagonal waveguides</a>, SIAM J. of Appl. Math., 35 (1978), 508-514. (Note: 6-digit results.)
%H L. M. Cureton and J. R. Kuttler, <a href="http://dx.doi.org/10.1006/jsvi.1998.1919">Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection</a>, Journal of Sound and Vibration, 220 (1998), 83-98. (Note: Table 2 presents their 8-digit digit results.)
%H Robert S. Jones, <a href="http://arxiv.org/abs/1602.08636">Computing ultra-precise eigenvalues of the Laplacian within polygons</a>, arXiv preprint arXiv:1602.08636, 2016
%e 7.1553391339260551282100176168331392806691995857769779...
%Y Cf. A262701 (L-shape) and A262823 (regular pentagon).
%K nonn,cons
%O 1,1
%A _Robert Stephen Jones_, Oct 12 2015