Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Oct 10 2015 07:09:28
%S 14,36,29,168,148,59,912,1664,522,119,52446,28048,10356,1708,238,
%T 502800,887805,316392,56288,5124,477,5950176,21881010,17782827,
%U 3049840,238104,15640,955,79674864,583371100,881938092,344322375,16751376,1294448,47602
%N T(n,k)=Number of (n+3)X(k+3) 0..1 arrays with each row divisible by 15 and column not divisible by 15, read as a binary number with top and left being the most significant bits.
%C Table starts
%C ...14.....36......168........912........52446........502800.......5950176
%C ...29....148.....1664......28048.......887805......21881010.....583371100
%C ...59....522....10356.....316392.....17782827.....881938092...47672389112
%C ..119...1708....56288....3049840....344322375...33563774112.3600054345088
%C ..238...5124...238104...16751376...6946980030.1213776549696
%C ..477..15640..1294448..216762400.113558538589
%C ..955..47602..6844676.2168966344
%C .1911.144236.35274768
%C .3822.432708
%C .7645
%H R. H. Hardin, <a href="/A263124/b263124.txt">Table of n, a(n) for n = 1..59</a>
%F Empirical for column k:
%F k=1: a(n) = 2*a(n-1) +a(n-4) -2*a(n-5)
%F k=2: [order 46]
%e Some solutions for n=3 k=4
%e ..0..0..0..0..0..0..0....1..0..0..1..0..1..1....1..1..0..1..0..0..1
%e ..0..0..0..0..0..0..0....0..0..1..1..1..1..0....1..1..0..1..0..0..1
%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..1..0..1..1..0..1
%e ..0..0..1..1..1..1..0....0..1..1..1..1..0..0....0..0..0..0..0..0..0
%e ..0..0..0..0..0..0..0....1..0..0..1..0..1..1....0..0..1..1..1..1..0
%e ..1..1..0..1..0..0..1....1..0..1..1..0..1..0....1..0..0..1..0..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Oct 10 2015