Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Mar 23 2016 04:54:56
%S 1,1,1462563,191731486403293,496505991344667030490635,
%T 12024609569670508078686022988554381,
%U 1742079663955078309800553960117733249663480043,1121241285685659360225420876424590015281785102622410968973
%N Number of lattice paths from {9}^n to {0}^n using steps that decrement one or more components by one.
%H Alois P. Heinz, <a href="/A263071/b263071.txt">Table of n, a(n) for n = 0..50</a>
%F a(n) ~ 3*sqrt(Pi) * (9^8/8!)^n * n^(9*n+1/2) / (2^(9/2) * exp(9*n) * (log(2))^(9*n+1)). - _Vaclav Kotesovec_, Mar 23 2016
%t With[{r = 9}, Flatten[{1, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, r]^k, {i, 0, j}], {j, 0, k*r}], {k, 1, 10}]}]] (* _Vaclav Kotesovec_, Mar 22 2016 *)
%Y Row n=9 of A262809.
%K nonn
%O 0,3
%A _Alois P. Heinz_, Oct 08 2015