login
Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one or more components by one.
2

%I #8 Mar 23 2016 12:50:15

%S 1,7087261,4659168491711401,7687300579969605991710001,

%T 19133358944433370977791260580721121,

%U 60169662022264019813634467045726478557798101,220079308019032269943223432841210561656944209845808241,894709632166224106718347951886305028154659386016685862593012481

%N Number of lattice paths from {n}^9 to {0}^9 using steps that decrement one or more components by one.

%H Alois P. Heinz, <a href="/A263069/b263069.txt">Table of n, a(n) for n = 0..50</a>

%F a(n) ~ sqrt(c) * d^n / (Pi*n)^4, where d = 7400694480.0494436216324852038000444393262965328... and c = 0.0365684849906610318536810681059888603001404... . - _Vaclav Kotesovec_, Mar 23 2016

%t With[{k = 9}, Table[Sum[Sum[(-1)^i*Binomial[j, i]*Binomial[j - i, n]^k, {i, 0, j}], {j, 0, k*n}], {n, 0, 10}]] (* _Vaclav Kotesovec_, Mar 22 2016 *)

%Y Column k=9 of A262809.

%K nonn

%O 0,2

%A _Alois P. Heinz_, Oct 08 2015