OFFSET
1,1
COMMENTS
These are the odd numbers 7 (mod 8), not a square, that have in the composite case no prime factors 3 or 5 (mod 8), and do not represent +2 by the indefinite binary quadratic form X^2 - D*Y^2 (with discriminant 4*D > 0).
The numbers D which admit solutions of the Pell equation X^2 - D Y^2 = +2 are given by A261246.
Necessary conditions for nonsquare odd D were shown there to be D == 7 (mod 8), without prime factors 3 or 5 (mod 8) in the composite case. Thus only prime factors +1 (mod 8) and -1 (mod 8) can appear, and the number of the latter is odd. It has been conjectured that all such numbers D appear in A261246, but this conjecture is false as the present sequence shows.
All entries seem to be composite. The first numbers are 791 = 7*113, 799 = 17*47, 943 = 23*41, 1271 = 31*41, 1351 = 7*193, 1631 = 7*233, ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Nov 10 2015
STATUS
approved