login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (f(-x^5) / f(-x))^2 in powers of x where f() is a Ramanujan theta function.
6

%I #14 Mar 12 2021 22:24:48

%S 1,2,5,10,20,34,61,100,165,260,408,620,940,1390,2045,2960,4257,6040,

%T 8525,11900,16522,22738,31130,42300,57210,76872,102834,136800,181230,

%U 238900,313725,410160,534330,693330,896655,1155420,1484274,1900420,2426215,3088100

%N Expansion of (f(-x^5) / f(-x))^2 in powers of x where f() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%C Number of 5-regular bipartitions of n. - _N. J. A. Sloane_, Oct 20 2019

%D Kathiravan, T., and S. N. Fathima. "On L-regular bipartitions modulo L." The Ramanujan Journal 44.3 (2017): 549-558.

%H Vaclav Kotesovec, <a href="/A263002/b263002.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1/3) * (eta(q^5) / eta(q))^2 in powers of q.

%F Euler transform of period 5 sequence [ 2, 2, 2, 2, 0, ...].

%F G.f. is a period 1 Fourier series which satisfies f(-1 / (45 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A058511.

%F Given g.f. A(x), then B(q) = q * A(q^3) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (u - v^2) * (v - u^2) - 4*u^2*v^2.

%F Convolution inverse is A058511.

%F a(n) ~ exp(4*Pi*sqrt(n/15)) / (sqrt(2) * 3^(1/4) * 5^(5/4) * n^(3/4)). - _Vaclav Kotesovec_, Oct 14 2015

%F See Maple code for a simple g.f. - _N. J. A. Sloane_, Oct 20 2019

%e G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 20*x^4 + 34*x^5 + 61*x^6 + 100*x^7 + ...

%e G.f. = q + 2*q^4 + 5*q^7 + 10*q^10 + 20*q^13 + 34*q^16 + 61*q^19 + 100*q^22 + ...

%p f:=(k,M) -> mul(1-q^(k*j),j=1..M);

%p LRBP := (L,M) -> (f(L,M)/f(1,M))^2;

%p S := L -> seriestolist(series(LRBP(L,80),q,60));

%p S(5); # _N. J. A. Sloane_, Oct 20 2019

%t a[ n_] := SeriesCoefficient[ (QPochhammer[ x^5] / QPochhammer[ x])^2, {x, 0, n}];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^5 + A) / eta(x + A))^2, n))};

%Y Cf. A058511.

%Y Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548.

%K nonn

%O 0,2

%A _Michael Somos_, Oct 07 2015