Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Jan 04 2021 19:28:46
%S 0,2,36,624,11800,248400,5817084,150660608,4285808496,133010784000,
%T 4475982692500,162419627132928,6324111407554824,263067938335913984,
%U 11645155099754347500,546652030933421260800,27126781579050558916576,1418971858887930496745472
%N Total tail length of all iteration trajectories of all elements of random mappings from [n] to [n].
%C An iteration trajectory is the directed graph obtained by iterating the mapping starting from one of the n elements until a cycle appears and consists of a tail attached to a cycle.
%H G. C. Greubel, <a href="/A262973/b262973.txt">Table of n, a(n) for n = 1..380</a>
%H P. Flajolet and A. M. Odlyzko, <a href="https://hal.inria.fr/inria-00075445">Random Mapping Statistics</a>, INRIA RR 1114, 1989.
%H Math StackExchange, <a href="http://math.stackexchange.com/questions/1463544/">Generating functions for tail length and rho-length</a>
%F E.g.f.: T^2/(1-T)^4 where T is the labeled tree function, average over all mappings and values is asymptotic to sqrt(Pi*n/8).
%p proc(n) 1/2*n!*add(n^q*(n - q)*(n - 1 - q)/q!, q = 0 .. n - 2) end proc
%t Table[n!/2 Sum[n^q (n - q) (n - 1 - q)/q!, {q, 0, n - 2}], {n, 21}] (* _Michael De Vlieger_, Oct 06 2015 *)
%K nonn
%O 1,2
%A _Marko Riedel_, Oct 05 2015