login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262970
Total cycle length of all iteration trajectories of all elements of random mappings from [n] to [n].
2
1, 10, 117, 1648, 27425, 528336, 11581885, 284878336, 7772592897, 233010784000, 7614411069221, 269412832512000, 10261487793254113, 418636033893726208, 18213563455467238125, 841799936112774086656, 41189866031118283907585, 2127207204243268173103104
OFFSET
1,2
COMMENTS
An iteration trajectory is the directed graph obtained by iterating the mapping starting from one of the n elements until a cycle appears and consists of a tail attached to a cycle.
LINKS
P. Flajolet and A. M. Odlyzko, Random Mapping Statistics, INRIA RR 1114, 1989.
FORMULA
E.g.f.: T/(1-T)^4, where T is the labeled tree function, average over all mappings and values asymptotic to sqrt(Pi*n/8).
a(n) = e^n * n * Gamma(n + 1, n) / 2. - Peter Luschny, Jul 20 2024
MAPLE
proc(n) 1/2*n!*add(n^q*(n + 1 - q)*(n - q)/q!, q = 0 .. n - 1) end proc
MATHEMATICA
Table[n!/2 Sum[n^q (n + 1 - q) (n - q)/q!, {q, 0, n - 1}], {n, 21}] (* Michael De Vlieger, Oct 06 2015 *)
a[n_] := E^n n Gamma[n + 1, n] / 2;
Table[a[n], {n, 1, 19}] (* Peter Luschny, Jul 20 2024 *)
PROG
(PARI) a(n) = n! * sum(q=0, n-1, n^q*(n+1-q)*(n-q)/q!)/2;
CROSSREFS
Cf. A036360.
Sequence in context: A251318 A083448 A024129 * A309582 A367779 A155622
KEYWORD
nonn
AUTHOR
Marko Riedel, Oct 05 2015
STATUS
approved