login
Expansion of Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(3*k-1)).
2

%I #7 Oct 05 2015 05:51:25

%S 1,1,1,2,1,3,3,3,6,5,7,9,9,12,15,16,21,24,26,33,37,42,51,57,65,78,86,

%T 99,115,128,146,168,187,213,243,269,306,345,383,433,487,539,607,678,

%U 749,842,935,1033,1157,1279,1413,1575,1736,1916,2127,2339,2579,2853

%N Expansion of Product_{k>=1} (1 + x^(2*k-1)) * (1 + x^(3*k-1)).

%H Vaclav Kotesovec, <a href="/A262952/b262952.txt">Table of n, a(n) for n = 0..1000</a>

%H Vaclav Kotesovec, <a href="http://arxiv.org/abs/1509.08708">A method of finding the asymptotics of q-series based on the convolution of generating functions</a>, arXiv:1509.08708 [math.CO], Sep 30 2015

%F a(n) ~ 5^(1/4) * exp(Pi*sqrt(5*n/2)/3) / (2^(23/12) * sqrt(3) * n^(3/4)).

%t nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k-1)) * (1 + x^(3*k-1)), {k, 1, nmax}], {x, 0, nmax}], x]

%Y Cf. A000700, A262928, A262953.

%K nonn

%O 0,4

%A _Vaclav Kotesovec_, Oct 05 2015