Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Sep 08 2022 08:46:14
%S 1,2,3,5,6,10,15,19,23,25,29,30,38,43,46,47,50,53,57,58,67,69,71,73,
%T 75,86,87,94,95,97,101,106,114,115,125,129,134,138,139,141,142,145,
%U 146,149,150,159,163,167,173,174,190,191,193,194,197,201,202,211,213
%N Numbers k such that 6 is a square mod k.
%H Alois P. Heinz, <a href="/A262931/b262931.txt">Table of n, a(n) for n = 1..20000</a>
%e 6^2 == 6 (mod 15), so 15 is a term.
%p with(numtheory):
%p a:= proc(n) option remember; local k;
%p for k from 1+`if`(n=1, 0, a(n-1))
%p while mroot(6, 2, k)=FAIL do od; k
%p end:
%p seq(a(n), n=1..80); # _Alois P. Heinz_, Feb 24 2017
%t Join[{1}, Table[If[Reduce[x^2 == 6, Modulus->n] === False, Null, n], {n, 2, 300}]//Union] (* _Vincenzo Librandi_, Oct 05 2015 *)
%o (PARI) for(n=1, 300, if (issquare(Mod(6, n)), print1(n", "))); \\ _Altug Alkan_, Oct 04 2015
%o (Magma) [n: n in [1..300] | exists(t){x : x in ResidueClassRing(n) | x^2 eq 6}]; // _Vincenzo Librandi_, Oct 05 2015
%Y Cf. A057125, A057126, A057762, A262932.
%K nonn,easy
%O 1,2
%A _Erik Pelttari_, Oct 04 2015