login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

{2,7}-primes (defined in Comments).
2

%I #8 Nov 09 2015 16:23:08

%S 2,31,47,103,173,199,229,367,409,463,743,827,911,967,1123,1163,1321,

%T 1447,1583,1657,1669,2161,2647,2677,2861,3361,3673,3851,4079,4231,

%U 4271,4513,4663,5003,5381,5923,6329,6569,7043,7103,7393,7561,8263,8753,9649,10337

%N {2,7}-primes (defined in Comments).

%C Let S = {b(1), b(2), ..., b(k)}, where k > 1 and b(i) are distinct integers > 1 for j = 1..k. Call p an S-prime if the digits of p in base b(i) spell a prime in each of the bases b(j) in S, for i = 1..k. Equivalently, p is an S-prime if p is a strong-V prime (defined at A262729) for every permutation of the vector V = (b(1), b(2), ..., b(k)).

%H Clark Kimberling, <a href="/A262834/b262834.txt">Table of n, a(n) for n = 1..1000</a>

%t {b1, b2} = {2, 7};

%t u = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b1], b2]] &]; (* A235477 *)

%t v = Select[Prime[Range[6000]], PrimeQ[FromDigits[IntegerDigits[#, b2], b1]] &]; (* A262833 *)

%t w = Intersection[u, v]; (* A262834 *)

%t (* _Peter J. C. Moses_, Sep 27 2015 *)

%Y Cf. A000040, A262729, A235266, A262833.

%K nonn,easy,base

%O 1,1

%A _Clark Kimberling_, Nov 05 2015