login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).
5

%I #18 Jul 20 2020 02:05:14

%S 1,12,215,4564,106442,2635704,68031147,1810302340,49308457334,

%T 1368019979976,38525145673126,1098380420669000,31641932951483220,

%U 919622628946689648,26931762975278938035,793967020231145502564,23543663463050594677310,701763102761640853890600,21014048069544552257072530,631868353403527700756671320,19070677448561228207945931276

%N O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).

%C O.g.f. is 1/x * the series reversion of x*(1 - x)^k/(1 + x)^(k+2) when k = 5. See the cross references for related sequences obtained from other values of k.

%H Peter Bala, <a href="/A100100/a100100_1.pdf">Notes on logarithmic differentiation, the binomial transform and series reversion</a>

%F a(n-1) = 1/n * Sum_{i = 0..n-1} binomial(7*n,i)*binomial(6*n-i-2,n-i-1).

%F O.g.f.: A(x) = exp ( Sum_{n >= 1} 1/n! * (7*n)!/(7*n/2)! * (5*n/2)!/(5*n)!*x^n/n ) = 1 + 12*x + 215*x^2 + 4564*x^3 + ....

%F 1 + x*A'(x)/A(x) is the o.g.f. for A262733.

%F O.g.f. is the series reversion of x*(1 - x)^5/(1 + x)^7,

%F a(0) = 1 and for n >= 1, a(n) = 1/n * Sum {k = 1..n} 1/k! * (7*k)!/(7*k/2)! * (5*k/2)!/(5*k)!*a(n-k).

%p A262739 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(7*k)!/GAMMA(7*k/2 + 1)*GAMMA(5*k/2 + 1)/(5*k)!*A262739(n-k), k = 1 .. n)/n end if; end proc:

%p seq(A262739(n), n = 0..20);

%o (PARI) a(n) = sum(k=0, n, binomial(7*(n+1),k)*binomial(6*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ _Altug Alkan_, Oct 03 2015

%Y Cf. A262733, A211419, A000108 (k = 0), A007297 (k = 1), A066357 (k = 2), A262737 (k = 3), A262738 (k = 4), A262740 (k = 6).

%K nonn,easy

%O 0,2

%A _Peter Bala_, Sep 29 2015