Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:46:14
%S 2,2,5,11,56,617,34553,21319202,736642386707,15704627843968647815,
%T 11568694537326272321321120595206,
%U 181682042349262169758803442669575561298555791374891,2101824050856189730969091901210449068013789839106586804501928241686514359003372547
%N a(n) = a(n-1)*a(n-2) + 1, with a(0) = a(1) = 2.
%H G. C. Greubel, <a href="/A262714/b262714.txt">Table of n, a(n) for n = 0..17</a>
%t RecurrenceTable[{a[0]==a[1]==2, a[n]==a[n-1]*a[n-2] +1}, a, {n, 0, 20}]
%o (Magma) [n le 2 select 2 else Self(n-1)*Self(n-2)+1: n in [1..20]];
%o (PARI) a(n) = if(n<2, 2, 1 + a(n-1)*a(n-2))
%o vector(20, n, a(n-1)) \\ _Altug Alkan_, Sep 30 2015
%o (PARI) {a(n) = if( n<2, 2 * (n>=0), self()(n-1) * self()(n-2) + 1)}; /* _Michael Somos_, Oct 02 2015 */
%o (Sage)
%o def a(n):
%o if (n==0 or n==1): return 2
%o else: return a(n-1)*a(n-2) +1
%o [a(n) for n in (0..20)] # _G. C. Greubel_, Jun 07 2019
%Y Cf. A007660, A055937.
%K nonn,easy
%O 0,1
%A _Vincenzo Librandi_, Sep 30 2015