login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.
2

%I #109 Oct 16 2015 03:05:16

%S 8,10,14,18,18,24,28,30,38,40,44,48,54,58,60,68,70,74,78,84,88,98,100,

%T 104,108,108,114,128,130,138,138,148,150,158,164,168,174,178,180,190,

%U 194,198,198,210,224,228,228,234,238,240,250,258,264,268,270,278,280

%N a(n) = p-(p/5) where p = prime(n) and (p/5) is a Legendre symbol.

%C The sequence lists Fibonacci indices q that are conjectured to produce Fibonacci numbers divisible by p^2, where p is a Fibonacci-Wieferich prime.

%D Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag, 2000.

%D Steven Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover. (See p. 73.)

%H U. Alfred, <a href="http://www.fq.math.ca/Scanned/1-1/alfred2.pdf">On the form of primitive factors of Fibonacci numbers</a>, Volume 1, Fibonacci Quarterly, vol 1 (1963), page 1.

%H Andreas-Stephan Elsenhans, <a href="http://www.uni-math.gwdg.de/tschinkel/gauss/Fibon.pdf">The Fibonacci sequence modulo p^2.</a>, pages 1-6.

%H Shane Findley, <a href="/A262708/a262708.txt">Discussion of Sequence A262708</a>.

%H Richard J. McIntosh and Eric L. Roettger, <a href="http://dx.doi.org/10.1090/S0025-5718-07-01955-2">A search for Fibonacci-Wieferich and Wolstenholme primes</a>, Mathematics of Computation, vol 76 (260), Oct 2007.

%H John Vinson, <a href="http://www.fq.math.ca/Scanned/1-2/vinson.pdf">The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence</a>, Fibonacci Quarterly, vol 1 (1963), pages 37-45.

%e For n=4, prime(4)=7, and a(4)=8.

%t Table[Prime@ n - JacobiSymbol[Prime@ n, 5], {n, 4, 60}] (* _Michael De Vlieger_, Oct 04 2015 *)

%o (PARI) lista(nn)=forprime(p=3, nn, print1(p-kronecker(p, 5), ", ");); \\ _Michel Marcus_, Sep 29 2015

%Y Cf. A001602, A051694.

%K nonn

%O 4,1

%A _Shane Findley_, Sep 27 2015

%E Edited by _N. J. A. Sloane_, Sep 29 2015

%E Edited by _Jon E. Schoenfield_, Oct 09 2015