login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Minimal nested palindromic base-4 primes with seed 2; see Comments.
3

%I #8 Oct 26 2015 22:23:35

%S 2,323,3332333,333323333,33333233333,103333323333301,

%T 1210333332333330121,100212103333323333301212001,

%U 3310021210333332333330121200133,3303310021210333332333330121200133033,11330331002121033333233333012120013303311

%N Minimal nested palindromic base-4 primes with seed 2; see Comments.

%C Using only base-4 digits 0,1,2,3, let s be a palindrome and put a(1) = s. Let a(2) be the least palindromic prime having s in the middle; for n > 2, let a(n) be the least palindromic prime have a(n-1) in the middle. Then (a(n)) is the sequence of minimal nested palindromic base-4 primes with seed s.

%H Clark Kimberling, <a href="/A262637/b262637.txt">Table of n, a(n) for n = 1..300</a>

%e a(3) = 3332333 is the least base-4 prime having a(2) = 323 in its middle.

%e Triangular format:

%e 2

%e 323

%e 3332333

%e 333323333

%e 33333233333

%e 103333323333301

%e 1210333332333330121

%t s = {2}; base = 4; z = 20; Do[NestWhile[# + 1 &, 1, ! PrimeQ[tmp = FromDigits[Join[#, IntegerDigits[Last[s]], Reverse[#]] &[IntegerDigits[#, base]], base]] &];

%t AppendTo[s, FromDigits[IntegerDigits[tmp, base]]], {z}]; s (* A262637 *)

%t Map[FromDigits[ToString[#], base] &, s] (* A262638 *)

%t (* _Peter J. C. Moses_, Sep 01 2015 *)

%Y Cf. A261881 (base 10), A262638, A262627.

%K nonn,easy,base

%O 1,1

%A _Clark Kimberling_, Oct 24 2015