login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A262607 Sum_{k=0..n} ((k+1)*binomial(n+1,k)*binomial(2*n-k,n))/(n+1). 1
1, 3, 11, 47, 219, 1075, 5459, 28383, 150131, 804515, 4355163, 23768079, 130572363, 721247571, 4002344355, 22296869823, 124633584099, 698707769923, 3927060020651, 22121780745711, 124865811262139, 706065855417203, 3998950848888051 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Table of n, a(n) for n=0..22.

D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths</a, J. Int. Seq. 13 (2010) # 10.9.2, Table 1.

FORMULA

G.f.: (-2*x^2+7*x-1)/(2*x*sqrt(x^2-6*x+1))+1/(2*x)-1.

G.f. satisfies -A'(x)/A(x)+A'(x)/x, where A(x)/x is g.f. of A155069

-(n+1)*(2*n^2+5*n-6)*a(n) +6*(2*n^3+6*n^2-11*n+4)*a(n-1) -(n-2)*(2*n^2+9*n+1)*a(n-2)=0. - R. J. Mathar, Jul 21 2017

a(n) ~ (1 + sqrt(2))^(2*n) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jul 10 2021

MATHEMATICA

Table[Sum[(k + 1) Binomial[n + 1, k] Binomial[2 n - k, n]/(n + 1), {k,

0, n}], {n, 0, 22}] (* Michael De Vlieger, Sep 26 2015 *)

PROG

(Maxima)

A(x):=x*(3-x-sqrt(1-6*x+x^2))/2;

taylor(-diff(A(x), x)/A(x)+diff(A(x), x, 1)/x, x, 0, 27);

CROSSREFS

Cf. A155069.

Sequence in context: A301770 A308227 A247313 * A059284 A118927 A217216

Adjacent sequences: A262604 A262605 A262606 * A262608 A262609 A262610

KEYWORD

nonn

AUTHOR

Vladimir Kruchinin, Sep 26 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 07:38 EST 2022. Contains 358691 sequences. (Running on oeis4.)