login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The x coordinate of the fundamental unit in the cubic field Q(D^(1/3)): see Comments for precise definition.
3

%I #9 Jun 23 2020 06:17:18

%S -1,-2,-1,1,1,2,-2,-3,1,1,-4,1,1,18,1,1,1,-47,23,-41399,1,3,0,

%T -322461439,1,-367,3742201,613,-7,1,10

%N The x coordinate of the fundamental unit in the cubic field Q(D^(1/3)): see Comments for precise definition.

%C Let D be the n-th cubefree number greater than 1, that is, D = A004709(n), n >= 2.

%C Let F = cubic field Q(D^(1/3)). Let eta be the positive fundamental unit in F. Then eta has a unique representation as eta = x + y*alpha + z*gamma, where (1,alpha,gamma) is the appropriate modified Dedekind basis for F. Then x,y,z are given by A262561, A262562, A262563 respectively.

%C See Sved (1970) for further details. Sved gives a table for all D < 200.

%H Marta Sved, <a href="http://annalesm.elte.hu/annales13-1970/Annales_1970_T-XIII.pdf">Units in pure cubic number fields</a>, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 13 (1970), 141-149.

%Y Cf. A004709, A262562, A262563.

%K sign,more

%O 2,2

%A _N. J. A. Sloane_, Oct 18 2015