login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Positive integers z such that pi(x^3+y^3) = pi(z^3) for some 0 < x <= y < z, where pi(m) denotes the number of primes not exceeding m.
4

%I #69 Apr 05 2024 10:04:33

%S 7,9,11,12,34,46,49,65,89,95,103,127,144,150,163,172,206,236,249,258,

%T 275,288,300,309,312,385,492,495,505,577,641,683,729,738,751,796,835,

%U 873,904,990,995,1010,1154,1210,1297,1312,1403,1458,1476,1502,1544,1626,1661,1731,1808,1852,1985,1988,2020,2059,2107,2214,2304,2316,2370,2448,2594,2833,2840,2883,2920,3073,3088,3097

%N Positive integers z such that pi(x^3+y^3) = pi(z^3) for some 0 < x <= y < z, where pi(m) denotes the number of primes not exceeding m.

%C The sequence has infinitely many terms. In fact, for any integer t > 0, we have (6*t^2)^3 + (6*t^3-1)^3 = (6*t^3+1)^3 - 2 and hence pi((6*t^2)^3+(6*t^3-1)^3) = pi((6*t^3+1)^3) since neither (6*t^3+1)^3 nor (6*t^3+1)^3-1 is prime.

%C Concerning the equation pi(x^3+y^3) = pi(z^3) with 0 < x <= y < z, there are exactly 70 solutions with z <= 2700. They are (x,y,z) = (5,6,7),(6,8,9),(7,10,11),(9,10,12),(15,33,34),(23,44,46),(24,47,49),(43,58,65),(41,86,89),(47,91,95),(64,94,103),(95,106,127),(71,138,144),(73,144,150),(54,161,163),(135,138,172),(128,188,206),(55,235,236),(135,235,249),(197,212,258),(159,256,275),(142,276,288),(146,288,300),(192,282,309),(161,297,312),(96,383,385),(252,345,385),(390,391,492),(334,438,495),(372,426,505),(426,486,577),(297,619,641),(353,650,683),(242,720,729),(244,729,738),(150,749,751),(602,659,796),(161,833,835),(470,825,873),(566,823,904),(668,876,990),(514,947,995),(744,852,1010),(791,812,1010),(509,1120,1154),(852,972,1154),(236,1207,1210),(216,1295,1297),(459,1293,1312),(915,1259,1403),(484,1440,1458),(488,1458,1476),(300,1498,1502),(368,1537,1544),(511,1609,1626),(420,1652,1661),(1278,1458,1731),(1132,1646,1808),(1033,1738,1852),(1241,1808,1985),(1010,1897,1988),(1582,1624,2020),(294,2057,2059),(237,2106,2107),(732,2187,2214),(575,2292,2304),(577,2304,2316),(1518,2141,2370),(1611,2189,2448),(432,2590,2594).

%C Recall Fermat's Last Theorem, which asserts that the Diophantine equation x^n + y^n = z^n with n > 2 and x,y,z > 0 has no solution. In 1936 K. Mahler discovered that

%C (9*t^3+1)^3 + (9*t^4)^3 - (9*t^4+3*t)^3 = 1.

%C Conjecture: (i) For any integers n > 3 and x,y,z > 0 with {x,y} not equal to {1,z}, we have |x^n+y^n-z^n| >= 2^n-2, unless n = 5, {x,y} = {13,16} and z = 17.

%C (ii) For any integer n > 3 and x,y,z > 0 with {x,y} not containing z, there is a prime p with x^n+y^n < p < z^n or z^n < p < x^n+y^n, unless n = 5, {x,y} = {13,16} and z = 17.

%C (iii) For any integers n > 3, x > y >= 0 and z > 0 with x not equal to z, there always exists a prime p with x^n-y^n < p < z^n or z^n < p < x^n-y^n.

%C We have verified part (i) of the conjecture for n = 4..10 and 0 < x,y,z <= 1700.

%D Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

%H Chai Wah Wu, <a href="/A262536/b262536.txt">Table of n, a(n) for n = 1..446</a>

%H M. Beck, E. Pine, W. Tarrant and K. Y. Jensen, <a href="https://doi.org/10.1090/S0025-5718-07-01947-3">New integer representations as the sum of three cubes</a>, Math. Comp. 76(2007), 1683-1690.

%H V. L. Gardiner, R. B. Lazarus, P. R. Stein, <a href="http://dx.doi.org/10.1090/S0025-5718-1964-0175843-9">Solutions of the diophantine equation x^3+y^3=z^3-d</a>, Math. Comp. 18 (1964) 408-413

%H K. Mahler, <a href="https://carmamaths.org/resources/mahler/docs/040.pdf">Note on hypothesis K of Hardy and Littlewood</a>, J. London Math. Soc. 11(1936), 136-138.

%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641 [math.NT], 2014.

%H A. J. Wiles, <a href="http://math.stanford.edu/~lekheng/flt/wiles-small.pdf">Modular elliptic curves and Fermat's last theorem</a>, Ann. Math. 141 (1995), 443-551.

%e a(1) = 7 since pi(5^3+6^3) = pi(125+216) = pi(341) = 68 = pi(343) = pi(7^3).

%e a(2) = 9 since pi(6^3+8^3) = pi(216+512) = pi(728) = 129 = pi(729) = pi(9^3).

%e a(50) = 1502 since pi(300^3+1498^3) = pi(27000000+3361517992) = pi(3388517992) = 162202081 = pi(3388518008) = pi(1502^3).

%t pi[n_]:=PrimePi[n]

%t n=0;Do[Do[If[pi[x^3+y^3]==pi[z^3],n=n+1;Print[n," ",z];Goto[aa]],{x,1,z-1},{y,x,z-1}];Label[aa];Continue,{z,1,2700}]

%Y Cf. A000578, A000720, A019590, A262408, A262409, A262443, A262462.

%K nonn

%O 1,1

%A _Zhi-Wei Sun_, Sep 24 2015