login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262451
Number of (n+3)X(2+3) 0..1 arrays with each row and column divisible by 15, read as a binary number with top and left being the most significant bits.
1
3, 5, 9, 17, 51, 117, 281, 705, 2115, 6597, 20105, 60433, 181299, 555125, 1688153, 5101505, 15304515, 46132805, 138926985, 417770513, 1253311539, 3762126453, 11293365145, 33895137473, 101685412419, 305043012293, 915147434121
OFFSET
1,1
COMMENTS
Column 2 of A262457.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -a(n-2) -8*a(n-3) +48*a(n-4) -168*a(n-5) +48*a(n-6) +312*a(n-7) -955*a(n-8) +2884*a(n-9) -955*a(n-10) -4832*a(n-11) +7632*a(n-12) -16032*a(n-13) +7632*a(n-14) +17568*a(n-15) +4886*a(n-16) -72248*a(n-17) +4886*a(n-18) +197200*a(n-19) -366336*a(n-20) +873744*a(n-21) -366336*a(n-22) -1155888*a(n-23) +1014058*a(n-24) -588568*a(n-25) +1014058*a(n-26) -2290528*a(n-27) +6020160*a(n-28) -17209056*a(n-29) +6020160*a(n-30) +27546528*a(n-31) -27604133*a(n-32) +27776948*a(n-33) -27604133*a(n-34) +27085688*a(n-35) -75797424*a(n-36) +221932632*a(n-37) -75797424*a(n-38) -362608200*a(n-39) +362785825*a(n-40) -363318700*a(n-41) +362785825*a(n-42) -361187200*a(n-43) +406335600*a(n-44) -541780800*a(n-45) +406335600*a(n-46)
EXAMPLE
Some solutions for n=4
..0..0..0..0..0....0..1..1..1..1....1..1..1..1..0....1..1..1..1..0
..0..0..0..0..0....0..1..1..1..1....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..1..1..1..1....0..0..0..0..0....1..1..1..1..0
..0..1..1..1..1....0..1..1..1..1....1..1..1..1..0....1..1..1..1..0
..0..1..1..1..1....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..1..1..1..1....0..0..0..0..0....1..1..1..1..0....1..1..1..1..0
..0..1..1..1..1....0..0..0..0..0....1..1..1..1..0....0..0..0..0..0
CROSSREFS
Cf. A262457.
Sequence in context: A006723 A217097 A298590 * A096390 A092264 A135729
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2015
STATUS
approved