login
A262415
Number of (n+1) X (3+1) 0..1 arrays with each row divisible by 3 and column not divisible by 3, read as a binary number with top and left being the most significant bits.
1
6, 45, 270, 1701, 10206, 61965, 371790, 2237301, 13423806, 80601885, 483611310, 2902199301, 17413195806, 104483957805, 626903746830, 3761465527701, 22568793166206, 135413146417725, 812478878506350, 4874876757822501
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) + 9*a(n-2) - 54*a(n-3).
Conjectures from Colin Barker, Dec 31 2018: (Start)
G.f.: 3*x*(2 + 3*x - 18*x^2) / ((1 - 3*x)*(1 + 3*x)*(1 - 6*x)).
a(n) = 3^(n-1) * (2^(n+3) - 2) / 2 for n even.
a(n) = 3^(n-1) * (2^(n+3) - 4) / 2 for n odd.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..1..1....1..1..1..1....1..1..1..1....1..1..0..0....1..1..0..0
..0..0..0..0....0..0..1..1....0..0..0..0....0..0..1..1....1..1..0..0
..1..1..0..0....1..0..0..1....1..0..0..1....0..0..1..1....1..1..0..0
..0..0..1..1....1..1..0..0....0..0..0..0....0..0..1..1....0..0..1..1
..0..0..1..1....0..1..1..0....0..1..1..0....0..0..0..0....0..0..0..0
CROSSREFS
Column 3 of A262420.
Sequence in context: A258350 A258623 A003486 * A297645 A201191 A214982
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 22 2015
STATUS
approved