login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.
11

%I #20 Oct 25 2021 06:19:25

%S 2,2,3,3,5,5,17,7,11,7,5,19,13,17,11,13,11,37,29,19,13,7,53,23,67,31,

%T 23,17,17,29,97,41,71,53,37,19,19,67,31,101,43,73,59,41,23,41,37,71,

%U 59,103,47,79,61,43,29,11,43,73,131,61,107,83,131,97,47,31

%N A(n,k) is the n-th prime whose binary expansion begins with the binary expansion of k; square array A(n,k), n>=1, k>=1, read by antidiagonals.

%H Alois P. Heinz, <a href="/A262365/b262365.txt">Antidiagonals n = 1..200, flattened</a>

%H <a href="/index/Pri#piden">Index entries for primes involving decimal expansion of n</a>

%e Square array A(n,k) begins:

%e : 2, 2, 3, 17, 5, 13, 7, 17, ...

%e : 3, 5, 7, 19, 11, 53, 29, 67, ...

%e : 5, 11, 13, 37, 23, 97, 31, 71, ...

%e : 7, 17, 29, 67, 41, 101, 59, 131, ...

%e : 11, 19, 31, 71, 43, 103, 61, 137, ...

%e : 13, 23, 53, 73, 47, 107, 113, 139, ...

%e : 17, 37, 59, 79, 83, 109, 127, 257, ...

%e : 19, 41, 61, 131, 89, 193, 227, 263, ...

%p u:= (h, t)-> select(isprime, [seq(h*2^t+k, k=0..2^t-1)]):

%p A:= proc(n, k) local l, p;

%p l:= proc() [] end; p:= proc() -1 end;

%p while nops(l(k))<n do p(k):= p(k)+1;

%p l(k):= [l(k)[], u(k,p(k))[]]

%p od: l(k)[n]

%p end:

%p seq(seq(A(n,1+d-n), n=1..d), d=1..14);

%t nmax = 14;

%t col[k_] := col[k] = Module[{bk = IntegerDigits[k, 2], lk, pp = {}, coe = 1}, lbk = Length[bk]; While[Length[pp] < nmax, pp = Select[Prime[Range[ coe*nmax]], Quiet@Take[IntegerDigits[#, 2], lbk] == bk&]; coe++]; pp];

%t A[n_, k_] := col[k][[n]];

%t Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Oct 25 2021 *)

%Y Columns k=1-7 give: A000040, A080165, A080166, A262286, A262284, A262287, A262285.

%Y Row n=1 gives A164022.

%Y Main diagonal gives A262366.

%Y Cf. A262350, A262369.

%K nonn,look,base,tabl

%O 1,1

%A _Alois P. Heinz_, Sep 20 2015