login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262332
T(n,k) = Number of (n+1) X (k+1) 0..1 arrays with each row and column divisible by 3, read as a binary number with top and left being the most significant bits.
8
2, 3, 3, 6, 5, 6, 11, 15, 15, 11, 22, 33, 90, 33, 22, 43, 99, 351, 351, 99, 43, 86, 261, 2106, 2399, 2106, 261, 86, 171, 783, 10935, 26131, 26131, 10935, 783, 171, 342, 2241, 65610, 252097, 570922, 252097, 65610, 2241, 342, 683, 6723, 378351, 2767631, 10789339
OFFSET
1,1
COMMENTS
Table starts
...2.....3........6.........11............22...............43
...3.....5.......15.........33............99..............261
...6....15.......90........351..........2106............10935
..11....33......351.......2399.........26131...........252097
..22....99.....2106......26131........570922.........10789339
..43...261....10935.....252097......10789339........394241389
..86...783....65610....2767631.....237172426......16940254423
.171..2241...378351...29452071....5028462531.....699094613961
.342..6723..2270106..323841891..110616890922...30056993215803
.683.19845.13482855.3532758473.2411745951979.1279198648576981
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3)
k=2: a(n) = 3*a(n-1) +3*a(n-2) -9*a(n-3)
k=3: a(n) = 6*a(n-1) +9*a(n-2) -54*a(n-3)
k=4: [order 7]
k=5: [order 11]
k=6: [order 15]
k=7: [order 19]
EXAMPLE
Some solutions for n=4, k=4
..0..0..0..0..0....0..1..1..1..1....1..1..0..1..1....0..0..0..1..1
..1..1..1..1..0....1..1..0..0..0....1..0..1..0..1....1..1..0..1..1
..1..1..1..1..0....1..1..1..1..0....1..0..0..1..0....1..0..0..1..0
..1..1..0..0..0....0..1..0..0..1....1..1..0..0..0....0..0..0..1..1
..1..1..0..0..0....0..0..1..1..0....0..0..1..1..0....0..1..0..0..1
CROSSREFS
Column 1 is A005578(n+1).
Sequence in context: A014498 A186286 A023821 * A262240 A333660 A187754
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Sep 18 2015
STATUS
approved