login
a(n) = smallest positive number, not a power of 2, that is not a substring of n in its binary representation.
3

%I #14 Sep 21 2015 17:21:28

%S 3,3,3,5,3,3,5,5,3,3,3,6,5,7,5,5,3,3,3,5,3,3,7,6,5,5,7,7,5,9,5,5,3,3,

%T 3,5,3,3,5,5,3,3,3,6,7,7,9,6,5,5,5,5,7,7,7,9,5,5,9,9,5,9,5,5,3,3,3,5,

%U 3,3,5,5,3,3,3,6,5,7,5,5,3,3,3,6,3,3,7

%N a(n) = smallest positive number, not a power of 2, that is not a substring of n in its binary representation.

%C Similar to A261461, but if the smallest missing number is a power of 2, ignore it and look at the next-smallest missing number.

%H Hiroaki Yamanouchi, <a href="/A262289/b262289.txt">Table of n, a(n) for n = 0..10000</a>

%H David Consiglio, Jr., <a href="/A262289/a262289.txt">Python Program</a>

%t fQ[m_, n_] := Block[{g}, g[x_] := ToString@FromDigits@IntegerDigits[x, 2]; StringContainsQ[g@ n, g@ m]]; Table[k = 3; While[Or[fQ[k, n] && k < 2 n, IntegerQ@ Log[2, k]], k++]; k, {n, 0, 86}] (* _Michael De Vlieger_, Sep 21 2015 *)

%Y Cf. A261416, A261461, A261922.

%Y See A262281 for the "nonnegative" version.

%K nonn,base

%O 0,1

%A _N. J. A. Sloane_, Sep 19 2015

%E a(23)-a(86) from _Hiroaki Yamanouchi_, Sep 20 2015