login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262268
Number of (n+2) X (2+2) 0..1 arrays with each row and column divisible by 5, read as a binary number with top and left being the most significant bits.
1
4, 16, 49, 169, 676, 2704, 10609, 42025, 168100, 672400, 2686321, 10738729, 42954916, 171819664, 687226225, 2748800041, 10995200164, 43980800656, 175922363761, 703687777321, 2814751109284, 11259004437136, 45036004326769
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 12*a(n-2) + 24*a(n-3) - 31*a(n-4) - 6*a(n-5) + 12*a(n-6) - 24*a(n-7) + 32*a(n-8).
Empirical g.f.: x*(4 - 8*x + x^2 - 29*x^3 - 10*x^4 + 20*x^5 + 8*x^6 + 32*x^7) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - 4*x)*(1 + x^2)*(1 + 4*x^2)). - Colin Barker, Dec 31 2018
EXAMPLE
Some solutions for n=4:
..1..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..1
..1..0..1..0....1..1..1..1....1..0..1..0....1..1..1..1....1..0..1..0
..0..1..0..1....0..1..0..1....1..1..1..1....0..0..0..0....1..1..1..1
..0..1..0..1....1..1..1..1....0..0..0..0....1..1..1..1....0..1..0..1
..1..0..1..0....0..1..0..1....0..1..0..1....0..0..0..0....0..0..0..0
..0..1..0..1....0..0..0..0....1..0..1..0....0..0..0..0....1..1..1..1
CROSSREFS
Column 2 of A262274.
Sequence in context: A283692 A173712 A085697 * A231156 A271483 A223659
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 17 2015
STATUS
approved