login
T(n,k) = Number of (n+3) X (k+3) 0..1 arrays with each row and column divisible by 11, read as a binary number with top and left being the most significant bits.
5

%I #6 Sep 03 2022 20:54:44

%S 2,3,3,6,5,6,12,13,13,12,24,31,60,31,24,47,85,238,238,85,47,94,223,

%T 1148,1306,1148,223,94,187,669,5057,10747,10747,5057,669,187,373,1733,

%U 26546,77490,164087,77490,26546,1733,373,745,4805,110661,778464,2091976

%N T(n,k) = Number of (n+3) X (k+3) 0..1 arrays with each row and column divisible by 11, read as a binary number with top and left being the most significant bits.

%C Table starts

%C ...2.....3......6......12.......24.......47.......94.......187......373.....745

%C ...3.....5.....13......31.......85......223......669......1733.....4805...13777

%C ...6....13.....60.....238.....1148.....5057....26546....110661...511785.2491813

%C ..12....31....238....1306....10747....77490...778464...4345849.31098659

%C ..24....85...1148...10747...164087..2091976.40276976.430768569

%C ..47...223...5057...77490..2091976.45391152

%C ..94...669..26546..778464.40276976

%C .187..1733.110661.4345849

%C .373..4805.511785

%C .745.13777

%H R. H. Hardin, <a href="/A262240/b262240.txt">Table of n, a(n) for n = 1..71</a>

%F Empirical for column k:

%F k=1: a(n) = 3*a(n-1) -2*a(n-2) -a(n-5) +3*a(n-6) -2*a(n-7).

%F k=2: [order 29].

%e Some solutions for n=5, k=4

%e ..1..1..0..0..0..1..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1

%e ..0..0..0..0..0..0..0....1..0..0..0..0..1..0....0..0..0..1..0..1..1

%e ..1..1..0..0..0..1..1....0..1..1..0..1..1..1....0..1..1..0..1..1..1

%e ..1..1..0..0..0..1..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1

%e ..1..0..0..1..1..0..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1

%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..1..1

%e ..1..0..0..1..1..0..1....1..1..0..1..1..1..0....0..0..0..0..0..0..0

%e ..1..0..0..1..1..0..1....0..1..1..0..1..1..1....0..1..1..0..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Sep 15 2015