%I
%S 2,3,3,6,5,6,12,13,13,12,24,31,60,31,24,47,85,238,238,85,47,94,223,
%T 1148,1306,1148,223,94,187,669,5057,10747,10747,5057,669,187,373,1733,
%U 26546,77490,164087,77490,26546,1733,373,745,4805,110661,778464,2091976
%N T(n,k) = Number of (n+3) X (k+3) 0..1 arrays with each row and column divisible by 11, read as a binary number with top and left being the most significant bits.
%C Table starts
%C ...2.....3......6......12.......24.......47.......94.......187......373.....745
%C ...3.....5.....13......31.......85......223......669......1733.....4805...13777
%C ...6....13.....60.....238.....1148.....5057....26546....110661...511785.2491813
%C ..12....31....238....1306....10747....77490...778464...4345849.31098659
%C ..24....85...1148...10747...164087..2091976.40276976.430768569
%C ..47...223...5057...77490..2091976.45391152
%C ..94...669..26546..778464.40276976
%C .187..1733.110661.4345849
%C .373..4805.511785
%C .745.13777
%H R. H. Hardin, <a href="/A262240/b262240.txt">Table of n, a(n) for n = 1..71</a>
%F Empirical for column k:
%F k=1: a(n) = 3*a(n1) 2*a(n2) a(n5) +3*a(n6) 2*a(n7).
%F k=2: [order 29].
%e Some solutions for n=5, k=4
%e ..1..1..0..0..0..1..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1
%e ..0..0..0..0..0..0..0....1..0..0..0..0..1..0....0..0..0..1..0..1..1
%e ..1..1..0..0..0..1..1....0..1..1..0..1..1..1....0..1..1..0..1..1..1
%e ..1..1..0..0..0..1..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1
%e ..1..0..0..1..1..0..1....0..1..0..1..1..0..0....0..0..0..1..0..1..1
%e ..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..0..0..1..0..1..1
%e ..1..0..0..1..1..0..1....1..1..0..1..1..1..0....0..0..0..0..0..0..0
%e ..1..0..0..1..1..0..1....0..1..1..0..1..1..1....0..1..1..0..1..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Sep 15 2015
