login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Minimum number of 7's such that n*[n; 7, ..., 7, n] = [x; ..., x] for some x, where [...] denotes simple continued fractions.
2

%I #9 Sep 16 2015 15:26:02

%S 2,3,5,2,11,1,5,11,2,9,11,5,5,11,11,3,11,19,5,3,29,7,11,2,5,35,5,6,11,

%T 31,23,19,11,5,11,8,59,11,5,20,11,13,29,11,23,45,11,13,2,3,5,52,35,29,

%U 5,19,20,57,11,30,95,11,47,5,59,67,11,7,5,23,11,36,8,11,59,9,11,79,11,107,20,27,11,11,41,27,29,43,11,5,23,31,137,59,23,47,41,59

%N Minimum number of 7's such that n*[n; 7, ..., 7, n] = [x; ..., x] for some x, where [...] denotes simple continued fractions.

%C Sequence A213896 lists fixed points of this sequence.

%t f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; f[7, #] & /@ Range[2, 120] (* _Michael De Vlieger_, Sep 16 2015 *)

%o (PARI) cf(v)={t=v[#v];forstep(i=#v-1,1,-1,t=v[i]+1/t);t}

%o A262217(n,d=7)=for(k=1,9e9,(c=contfrac(cf(vector(k+2,i,if(i>1&&i<k+2,d,n)))*n))[1]==c[#c]&&return(k))

%Y Cf. A213648, A262212 - A262220, A213900, A262211.

%Y Cf. A000057, A213891 - A213899, A261311: fixed points of the above.

%K nonn

%O 2,1

%A _M. F. Hasler_, Sep 15 2015